cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A109426 Numbers n such that tau(n)/omega(n) is not an integer [tau(n) =number of divisors of n; omega(n)=number of distinct prime factors of n].

Original entry on oeis.org

30, 36, 42, 66, 70, 78, 100, 102, 105, 110, 114, 120, 130, 138, 144, 154, 165, 168, 170, 174, 182, 186, 190, 195, 196, 222, 225, 230, 231, 238, 240, 246, 255, 258, 264, 266, 270, 273, 280, 282, 285, 286, 290, 310, 312, 318, 322, 324, 336, 345, 354, 357, 366
Offset: 1

Views

Author

Emeric Deutsch, Jun 28 2005

Keywords

Comments

Integers greater than 1 and not in A109425.

Examples

			The number 36 is in the sequence because tau(36)=9 (1,2,3,4,6,9,12,18,36) and omega(36)=2 (2,3) and so tau(36)/omega(36)=9/2.
The number 12 is not in the sequence because tau(12)=6 (1,2,3,4,6,12) and omega(12)=2 (2,3) and so tau(12)/omega(12)=3.
		

Crossrefs

Complement is A109425.

Programs

  • Maple
    with(numtheory): b:=proc(n) if type(tau(n)/nops(factorset(n)),integer)=false then n else fi end: seq(b(n),n=2..400);
  • Mathematica
    f[n_] := DivisorSigma[0, n]/Length[FactorInteger[n]]; Select[ Range[2, 369], !IntegerQ[ f[ # ]] &] (* Robert G. Wilson v, Jun 30 2005 *)
    Select[Range[2,400],!IntegerQ[DivisorSigma[0,#]/PrimeNu[#]]&] (* Harvey P. Dale, Oct 03 2015 *)
  • PARI
    is(n)=numdiv(n)%omega(n)>0 \\ Charles R Greathouse IV, May 15 2013

A175785 Numbers n such that the number of distinct prime divisors of n does not divide phi(n).

Original entry on oeis.org

30, 60, 66, 102, 110, 120, 132, 138, 150, 165, 170, 174, 204, 220, 230, 240, 246, 255, 264, 276, 282, 290, 300, 318, 340, 345, 348, 354, 374, 408, 410, 426, 435, 440, 460, 470, 480, 492, 498, 506, 528, 530, 534, 550, 552, 561, 564, 580, 590, 600, 606, 615
Offset: 1

Views

Author

Enrique Pérez Herrero, Sep 04 2010

Keywords

Comments

a(n) gives the integers where omega(n) = A001221(n) does not divide phi(n) = A000010(n).
This sequence does not contain any prime powers (A000961), nor any numbers with only two distinct prime divisors (A007774); so it is a subsequence of A000977.

Examples

			30 is in this sequence because omega(30)=3 does not divide phi(30)=8.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,700],Mod[EulerPhi[#],PrimeNu[#]]!=0&] (* Harvey P. Dale, Dec 29 2019 *)
  • PARI
    isok(n) = (eulerphi(n) % omega(n) != 0) \\ Michel Marcus, Jun 12 2013
Showing 1-2 of 2 results.