A109438 a(n) = 5a(n-1) - 5a(n-2) + a(n-3) + 2*(-1)^(n+1), alternatively a(n) = 3a(n-1) + 3a(n-2) - a(n-3).
1, 5, 18, 68, 253, 945, 3526, 13160, 49113, 183293, 684058, 2552940, 9527701, 35557865, 132703758, 495257168, 1848324913, 6898042485, 25743845026, 96077337620, 358565505453, 1338184684193, 4994173231318, 18638508241080
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,3,-1).
Programs
-
Mathematica
LinearRecurrence[{3,3,-1},{1,5,18},30] (* Harvey P. Dale, Sep 07 2021 *)
-
PARI
Vec((1 + 2*x) / ((1 + x)*(1 - 4*x + x^2)) + O(x^30)) \\ Colin Barker, May 12 2019
Formula
G.f.: (1+2*x) / ((x+1)*(x^2-4*x+1)).
a(n) = (-2*(-1)^n + (7-5*sqrt(3))*(2-sqrt(3))^n + (2+sqrt(3))^n*(7+5*sqrt(3))) / 12. - Colin Barker, May 12 2019
Comments