A109446 Binomial coefficients C(n,k) with n-k even, read by rows.
1, 1, 1, 1, 3, 1, 1, 6, 1, 5, 10, 1, 1, 15, 15, 1, 7, 35, 21, 1, 1, 28, 70, 28, 1, 9, 84, 126, 36, 1, 1, 45, 210, 210, 45, 1, 11, 165, 462, 330, 55, 1, 1, 66, 495, 924, 495, 66, 1, 13, 286, 1287, 1716, 715, 78, 1, 1, 91, 1001, 3003, 3003, 1001, 91, 1, 15, 455, 3003, 6435, 5005
Offset: 0
Examples
Starred terms in Pascal's triangle (A007318), read by rows: 1*; 1, 1*; 1*, 2, 1*; 1, 3*, 3, 1*; 1*, 4, 6*, 4, 1*; 1, 5*, 10, 10*, 5, 1*; 1*, 6, 15*, 20, 15*, 6, 1*; 1, 7*, 21, 35*, 35, 21*, 7, 1*; 1*, 8, 28*, 56, 70*, 56, 28*, 8, 1*; 1, 9*, 36, 84*, 126, 126*, 84, 36*, 9, 1*; Rows in A086645 (1; 1, 1; 1, 6, 1; ...) interspersed with rows in A103327 (1; 3, 1; 5, 10, 1; ...). 1; 1; 1, 1; 3, 1; 1, 6, 1; 5, 10, 1; 1, 15, 15, 1; 7, 35, 21, 1; ....
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
Programs
-
Maple
T:= (n, k)-> binomial(n, 2*k+irem(n, 2)): seq(seq(T(n, k), k=0..floor(n/2)), n=0..20); # Alois P. Heinz, Feb 07 2014
-
Mathematica
Flatten[ Table[ If[ EvenQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)
Extensions
More terms from Robert G. Wilson v, Aug 30 2005
Comments