cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109454 Sum of non-Fibonacci numbers between successive Fibonacci numbers: a(n) = Sum_{k=F(n)+1..F(n+1)-1} k.

Original entry on oeis.org

0, 0, 0, 0, 4, 13, 42, 119, 330, 890, 2376, 6291, 16588, 43615, 114492, 300236, 786828, 2061233, 5398470, 14136759, 37015990, 96917974, 253748880, 664346375, 1739318904, 4553656703, 11921726232, 31211643384, 81713400340, 213928875445, 560073740226
Offset: 0

Views

Author

Amarnath Murthy, Aug 27 2005

Keywords

Examples

			F(5) = F(4) + 1 = 4.
F(6) = (F(5) + 1) + (F(5) + 2) = 6+7 = 13.
F(7) = 9+10+11+12 = 42.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^4*(x^2 - x - 4)/((x + 1) (x^2 - 3 x + 1) (x^2 + x - 1)), {x, 0, 30}], x] (* Michael De Vlieger, Jul 08 2021 *)
    Total[Range[#[[1]]+1,#[[2]]-1]]&/@Partition[Fibonacci[Range[0,40]],2,1] (* or *) LinearRecurrence[{3,1,-5,-1,1},{0,0,0,0,4,13,42},40] (* Harvey P. Dale, Sep 30 2024 *)
  • PARI
    concat([0,0,0,0], Vec(x^4*(x^2-x-4) / ((x+1)*(x^2-3*x+1)*(x^2+x-1)) + O(x^100))) \\ Colin Barker, Mar 26 2015

Formula

a(n) = Fibonacci(n+2)*(Fibonacci(n-1)-1)/2, n>1. - Vladeta Jovovic, Aug 27 2005
a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) - a(n-4) + a(n-5) for n>6. - Colin Barker, Mar 26 2015
G.f.: x^4*(x^2-x-4) / ((x+1)*(x^2-3*x+1)*(x^2+x-1)). - Colin Barker, Mar 26 2015

Extensions

More terms from Franklin T. Adams-Watters, Jun 06 2006