A000609 Number of threshold functions of n or fewer variables.
2, 4, 14, 104, 1882, 94572, 15028134, 8378070864, 17561539552946, 144130531453121108
Offset: 0
References
- Sze-Tsen Hu, Threshold Logic, University of California Press, 1965 see page 57.
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
- S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 3.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. Stenson, Weighted voting, threshold functions, and zonotopes, in The Mathematics of Decisions, Elections, and Games, Volume 625 of Contemporary Mathematics Editors Karl-Dieter Crisman, Michael A. Jones, American Mathematical Society, 2014, ISBN 0821898663, 9780821898666
Links
- Taylor Brysiewicz, Holger Eble, and Lukas Kühne, Enumerating chambers of hyperplane arrangements with symmetry, arXiv:2105.14542 [math.CO], 2021.
- Nicolle Gruzling, Linear separability of the vertices of an n-dimensional hypercube, M.Sc Thesis, University of Northern British Columbia, 2006. [From W. Lan (wl(AT)fjrtvu.edu.cn), Jun 27 2010]
- Samuel C. Gutekunst, Karola Mészáros, and T. Kyle Petersen, Root Cones and the Resonance Arrangement, arXiv:1903.06595 [math.CO], 2019.
- Alastair D. King, Comments on A002080 and related sequences based on threshold functions, Mar 17 2023.
- Isaac K. Martin, Andrew G. Moore, John T. Daly, Jess J. Meyer, and Teresa M. Ranadive, Design of General Purpose Minimal-Auxiliary Ising Machines, arXiv:2310.16246 [math.OC], 2023. See p. 7.
- Chris Mingard, Joar Skalse, Guillermo Valle-Pérez, David Martínez-Rubio, Vladimir Mikulik, and Ard A. Louis, Neural networks are a priori biased towards Boolean functions with low entropy, arXiv:1909.11522 [cs.LG], 2019.
- Guido F. Montufar and Jason Morton, When Does a Mixture of Products Contain a Product of Mixtures?, arXiv preprint arXiv:1206.0387 [stat.ML], 2012-2014.
- S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
- Muroga, Saburo, Iwao Toda, and Satoru Takasu, Theory of majority decision elements, Journal of the Franklin Institute 271.5 (1961): 376-418. [Annotated scans of pages 413 and 414 only]
- S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825.
- S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- Stephen Wolfram, A New Kind Of Science. page 1102.
- Wikipedia, Linear separability [From W. Lan (wl(AT)fjrtvu.edu.cn), Jun 27 2010]
- R. O. Winder, Enumeration of seven-argument threshold functions, IEEE Trans. Electron. Computers, 14 (1965), 315-325.
- Index entries for "core" sequences
- Index entries for sequences related to Boolean functions
Formula
Extensions
a(9) from Minfeng Wang, Jun 27 2010
Comments