A109472 Cumulative sum of primes p such that 2^p - 1 is a Mersenne prime.
2, 5, 10, 17, 30, 47, 66, 97, 158, 247, 354, 481, 1002, 1609, 2888, 5091, 7372, 10589, 14842, 19265, 28954, 38895, 50108, 70045, 91746, 114955, 159452, 245695, 356198, 488247, 704338, 1461177, 2320610, 3578397, 4976666, 7952887, 10974264, 17946857, 31413774, 52409785, 76446368, 102411319, 132813776, 165396433, 202553100, 245196901, 288309510
Offset: 1
Keywords
Examples
a(1) = 2, since 2^2-1 = 3 is a Mersenne prime. a(2) = 2 + 3 = 5, since 2^3-1 = 7 is a Mersenne prime. a(3) = 2 + 3 + 5 = 10, since 2^5-1 = 31 is a Mersenne prime. a(4) = 2 + 3 + 5 + 7 = 17, since 2^7-1 = 127 is a Mersenne prime; 17 itself is prime (in fact a p such that 2^p-1 is a Mersenne prime). a(18) = 2 + 3 + 5 + 7 + 13 + 17 + 19 + 31 + 61 + 89 + 107 + 127 + 521 + 607 + 1279 + 2203 + 2281 + 3217 = 10589 (which is prime).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..48 (terms 1..47 from Gord Palameta)
Programs
-
Mathematica
Accumulate[Select[Range[3000], PrimeQ[2^# - 1] &]] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2011 *) Accumulate@ MersennePrimeExponent@ Range@ 45 (* Michael De Vlieger, Jul 22 2018 *)
Formula
a(n) = Sum_{i=1..n} A000043(i).
Extensions
a(38)-a(47) from Gord Palameta, Jul 21 2018
Comments