cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109474 a(1)=1, a(2)=3; thereafter, a(n) = least positive integer > a(n-1) and not equal to a(i)+a(j)+a(k) for 1<=i<=j<=k<=n-1.

Original entry on oeis.org

1, 3, 4, 13, 14, 23, 24, 33, 34, 43, 44, 53, 54, 63, 64, 73, 74, 83, 84, 93, 94, 103, 104, 113, 114, 123, 124, 133, 134, 143, 144, 153, 154, 163, 164, 173, 174, 183, 184, 193, 194, 203, 204, 213, 214, 223, 224, 233, 234, 243, 244, 253, 254, 263, 264, 273, 274, 283, 284
Offset: 1

Views

Author

Bela Bajnok (bbajnok(AT)gettysburg.edu), Aug 10 2005

Keywords

Crossrefs

Cf. A001622.

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{1,1,-1},{3,4,13},60]] (* Harvey P. Dale, Aug 19 2014 *)

Formula

a(n) = max{1, 5*n-9+2*(-1)^n}.
From Colin Barker, Jul 22 2012: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4.
G.f.: x*(1+2*x+7*x^3)/((1-x)^2*(1+x)). (End)
Conjecture: Except for the first term, a(n)=10*n-a(n-1)-23 (with a(2)=3). - Vincenzo Librandi, Dec 07 2010 [This is easily proved. - N. J. A. Sloane, Aug 07 2017]
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - sqrt(1-2/sqrt(5))*Pi/(10*phi) + log(phi)/(2*sqrt(5)) - log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

Extensions

Definition corrected by Bela Bajnok (bbajnok(AT)gettysburg.edu) and N. J. A. Sloane, Aug 07 2017