A109578 a(n) = (pi(n+1)-pi(n)) * (prime(n+1)-prime(n)), where pi(k) is the number of prime numbers less than or equal to k (= A000720(k)) and prime(k) is the k-th prime number (= A000040(k)).
1, 2, 0, 4, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0, 6, 0, 6, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 14, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 10, 0, 0, 0, 12, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 6, 0, 2, 0, 0, 0, 0, 0, 14, 0, 0, 0, 4, 0, 8, 0, 0, 0, 0, 0, 4, 0, 0, 0, 10, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 6, 0, 0
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Maple
with(numtheory): a:=n->(pi(n+1)-pi(n))*(ithprime(n+1)-ithprime(n)): seq(a(n),n=1..160);
-
Mathematica
an = Table[(PrimePi[n + 1] - PrimePi[n])*(Prime[n + 1] - Prime[n]), {n, 1, 200}]
-
PARI
A109578(n) = ((primepi(n+1)-primepi(n)) * (prime(n+1)-prime(n))); \\ Antti Karttunen, Jan 03 2019