cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109611 Chen primes: primes p such that p + 2 is either a prime or a semiprime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409
Offset: 1

Views

Author

Paul Muljadi, Jul 31 2005

Keywords

Comments

43 is the first prime which is not a member (see A102540).
Contains A001359 = lesser of twin primes.
A063637 is a subsequence. - Reinhard Zumkeller, Mar 22 2010
In 1966 Chen proved that this sequence is infinite; his proof did not appear until 1973 due to the Cultural Revolution. - Charles R Greathouse IV, Jul 12 2016
Primes p such that p + 2 is a term of A037143. - Flávio V. Fernandes, May 08 2021
Named after the Chinese mathematician Chen Jingrun (1933-1996). - Amiram Eldar, Jun 10 2021

Examples

			a(4) = 7 because 7 + 2 = 9 and 9 is a semiprime.
a(5) = 11 because 11 + 2 = 13, a prime.
		

Crossrefs

Programs

  • Maple
    A109611 := proc(n)
        option remember;
        if n =1 then
            2;
        else
            a := nextprime(procname(n-1)) ;
            while true do
                if isprime(a+2) or numtheory[bigomega](a+2) = 2 then
                    return a;
                end if;
                a := nextprime(a) ;
            end do:
        end if;
    end proc: # R. J. Mathar, Apr 26 2013
  • Mathematica
    semiPrimeQ[x_] := TrueQ[Plus @@ Last /@ FactorInteger[ x ] == 2]; Select[Prime[Range[100]], PrimeQ[ # + 2] || semiPrimeQ[ # + 2] &] (* Alonso del Arte, Aug 08 2005 *)
    SequencePosition[PrimeOmega[Range[500]], {1, , 1|2}][[All, 1]] (* _Jean-François Alcover, Feb 10 2018 *)
  • PARI
    isA001358(n)= if( bigomega(n)==2, return(1), return(0) );
    isA109611(n)={ if( ! isprime(n), return(0), if( isprime(n+2), return(1), return( isA001358(n+2)) ); ); }
    { n=1; for(i=1,90000, p=prime(i); if( isA109611(p), print(n," ",p); n++; ); ); } \\ R. J. Mathar, Aug 20 2006
    
  • PARI
    list(lim)=my(v=List([2]),semi=List(),L=lim+2,p=3); forprime(q=3,L\3, forprime(r=3,min(L\q,q), listput(semi,q*r))); semi=Set(semi); forprime(q=7,lim, if(setsearch(semi,q+2), listput(v,q))); forprime(q=5,L, if(q-p==2, listput(v,p)); p=q); Set(v) \\ Charles R Greathouse IV, Aug 25 2017
    
  • Python
    from sympy import isprime, primeomega
    def ok(n): return isprime(n) and (primeomega(n+2) < 3)
    print(list(filter(ok, range(1, 410)))) # Michael S. Branicky, May 08 2021

Formula

a(n)+2 = A139690(n).
Sum_{n>=1} 1/a(n) converges (Zhou, 2009). - Amiram Eldar, Jun 10 2021

Extensions

Corrected by Alonso del Arte, Aug 08 2005