cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: , 1|2}][[All, 1]] (* _Jean-François Alcover

, 1|2}][[All, 1]] (* _Jean-François Alcover's wiki page.

, 1|2}][[All, 1]] (* _Jean-François Alcover has authored 29 sequences. Here are the ten most recent ones:

A361502 Index of n-th prime in A359804.

Original entry on oeis.org

2, 3, 4, 8, 13, 42, 347, 3466, 49012, 528231, 717126, 63056215, 1375559400, 7038527851
Offset: 1

Author

N. J. A. Sloane, Mar 18 2023, based on a comment made by Michael De Vlieger in A359804 in which he gave the values of a(1) to a(12)

Keywords

Comments

Theorem: Every prime appears in A359804. For proof see A359804.
It appears that the primes in A359804 appear in order.

Crossrefs

Programs

  • Mathematica
    nn = 2^20; c[] = False; q[] = 1;
     i = 1; j = 2; c[1] = c[2] = True; u = 3;
     {2}~Join~Reap[Monitor[Do[
          (k = q[#]; While[c[k #], k++]; k *= #;
             While[c[# q[#]], q[#]++]) &[(p = 2;
            While[Divisible[i j, p], p = NextPrime[p]]; p)];
          If[PrimeQ[k], Sow[n]; Print[n]];
          Set[{c[k], i, j}, {True, j, k}];
    If[k == u, While[c[u], u++]], {n, 3, nn}], n]][[-1, -1]] (* Michael De Vlieger, Mar 19 2023 *)

Extensions

a(13)-a(14) from Rémy Sigrist, Mar 19 2023

A354168 Let M_p = 2^p-1 be a Mersenne prime, where p is an odd prime. Sequence lists p such that b_{p-2} == -2^((p+1)/2) mod M_p, where {b_k} is defined in the Comments.

Original entry on oeis.org

7, 17, 19, 89, 107, 521, 607, 1279, 2281, 3217, 4423, 9689, 11213, 21701, 44497, 216091, 859433, 1257787, 24036583, 30402457, 32582657, 42643801, 57885161, 74207281, 82589933
Offset: 1

Author

N. J. A. Sloane, Jun 02 2022, based on Section 16.1 of Cosgrave (2022)

Keywords

Comments

Let M_p = 2^p-1 (not necessarily a prime) where p is an odd prime, and define b_1 = 4; b_k = b_{k-1}^2 - 2 (mod M_p) for k >= 2.
The Lucas-Lehmer theorem says that M_p is a prime iff b_{p-1} == 0 (mod M_p).
Furthermore, if M_p is a prime, then b_{p-2} is congruent to +- 2^((p+1)/2) (mod M_p).
This partitions the Mersenne prime exponents A000043 into two classes, listed here and in A354167.

References

  • J. B. Cosgrave, A Mersenne-Wieferich Odyssey, Manuscript, May 2022. See Section 16.1.

Crossrefs

Cf. A123271 (sign of the penultimate term of the Lucas-Lehmer sequence).

Extensions

Thanks to Chai Wah Wu for several corrections. - N. J. A. Sloane, Jun 02 2022
a(16) from Chai Wah Wu, Jun 03 2022
a(17)-a(18) from Chai Wah Wu, Jun 04 2022
a(19)-a(25) from Serge Batalov, Jun 11 2022

A354167 Let M_p = 2^p-1 be a Mersenne prime, where p is an odd prime. Sequence lists p such that b_{p-2} == 2^((p+1)/2) mod M_p, where {b_k} is defined in the Comments.

Original entry on oeis.org

3, 5, 13, 31, 61, 127, 2203, 4253, 9941, 19937, 23209, 86243, 110503, 132049, 756839, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 25964951, 37156667, 43112609, 77232917
Offset: 1

Author

N. J. A. Sloane, Jun 02 2022, based on Section 16.1 of Cosgrave (2022)

Keywords

Comments

Let M_p = 2^p-1 (not necessarily a prime) where p is an odd prime, and define b_1 = 4; b_k = b_{k-1}^2 - 2 (mod M_p) for k >= 2.
The Lucas-Lehmer theorem says that M_p is a prime iff b_{p-1} == 0 (mod M_p).
Furthermore, if M_p is a prime, then b_{p-2} is congruent to +- 2^((p+1)/2) (mod M_p).
This partitions the Mersenne prime exponents A000043 into two classes, listed here and in A354168.

References

  • J. B. Cosgrave, A Mersenne-Wieferich Odyssey, Manuscript, May 2022. See Section 16.1.

Crossrefs

Cf. A123271 (sign of the penultimate term of the Lucas-Lehmer sequence).

Extensions

Thanks to Chai Wah Wu for several corrections. - N. J. A. Sloane, Jun 02 2022
a(15) from Chai Wah Wu, Jun 04 2022
a(16)-a(25) from Serge Batalov, Jun 11 2022

A292766 Numbers n whose trajectory under iteration of the map k -> (sigma(k)+phi(k))/2 consists only of integers and is unbounded, excluding numbers n whose trajectory merges with the trajectory of a smaller number.

Original entry on oeis.org

270, 440, 496, 702, 737, 813, 828, 897, 905, 1027, 1066, 1099, 1240, 1241, 1260, 1331, 1353, 1368, 1371, 1422, 1507, 1537, 1754, 1760, 1834, 1848, 2002, 2016, 2282
Offset: 1

Author

N. J. A. Sloane, Sep 27 2017, based on emails from Sean A. Irvine, Sep 14 2017, who computed a(1)-a(9), and Hans Havermann, same date, who computed a(10)-a(29). Hugo Pfoertner also computed many of these terms

Keywords

Comments

These are the "seeds" in A291790, that is, every number which blows up under iteration of the map k -> (sigma(k)+phi(k))/2 belongs to one of these trajectories. AT PRESENT ALL TERMS ARE CONJECTURAL.
The trajectories of these numbers are pairwise disjoint for the first 400 steps.
This is unsatisfactory because it is possible that, at some later step, these trajectories may merge, reach a prime (a fixed point), or reach a fraction (and die). However, this seems unlikely on probabilistic grounds - see the remarks of Andrew R. Booker in A292108.
Normally such a sequence would not be included in the OEIS, but exceptions have been made for this and A291790 because a number of people have worked on them, and also in the hope that this will encourage resolution of some of the open questions.
Needs a b-file.

Crossrefs

A281432 E.g.f. C(x) satisfies: C(x) = cosh( Integral C(x)^5 dx ).

Original entry on oeis.org

1, 1, 21, 1341, 173961, 38032281, 12572222301, 5853055718421, 3649908317290641, 2936992590376253361, 2962874009751302380581, 3662113951884448455886701, 5442785335874229886957949721, 9576772316393556595041389524041, 19688717121629473508791582116311661, 46766278604566476892923500929537926981, 127098490344228968075529350992858163636001
Offset: 0

Author

Paul D. Hanna, Jan 21 2017

Keywords

Programs

  • Mathematica
    terms = 20; max = 2terms; se = Series[(1/8)*((x*(5+3x^2))/(1+x^2)^2 + 3* ArcTan[x]), {x, 0, max}]; s[x_] = InverseSeries[se, x] // Normal; coes = CoefficientList[Sqrt[1+s[x]^2]+O[x]^(max+1), x]*Range[0, max]!; Partition[ coes, 2][[All, 1]] (* Jean-François Alcover, Mar 01 2017 *)
  • PARI
    {a(n) = my(S=x, C=1); for(i=0, n, S = intformal( C^6 +x*O(x^(2*n))); C = 1 + intformal( S*C^5 ) ); (2*n)!*polcoeff(C, 2*n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

C(x)^2 - S(x)^2 = 1 and C(x) = 1 + Integral C(x)^5*S(x) dx, where S(x) is described by A281431.

A260036 Number of configurations of the general monomer-dimer model for an 8 X 2n square lattice.

Original entry on oeis.org

1, 7573, 211351945, 6158217253688, 179788343101980135, 5249581929453966097649, 153282416794739031814924079, 4475693398084103779028604877129, 130685784089846859975392644067590259, 3815894599555857747953551843550514992237
Offset: 0

Author

N. J. A. Sloane, Jul 19 2015

Keywords

Crossrefs

Bisection (even part) of A033511.

Programs

Extensions

a(0), a(5)-a(9) from Alois P. Heinz, Mar 08 2016

A251411 Numbers k such that A098550(k) = k.

Original entry on oeis.org

1, 2, 3, 4, 12, 50, 86
Offset: 1

Author

N. J. A. Sloane, Dec 02 2014

Keywords

Comments

There is a strong conjecture that there are no further terms. See the discussion in the comments in A098550.

References

  • L. Edson Jeffery, Posting to Sequence Fans Mailing List, Nov 30 2014.

Crossrefs

Programs

  • Mathematica
    max = 100;
    f[lst_] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];
    A098550 = Nest[f, {1, 2, 3}, max - 3];
    Select[Transpose[{Range[max], A098550}], #[[1]] == #[[2]]&][[All, 1]] (* Jean-François Alcover, Sep 05 2018, after Robert G. Wilson v in A098550 *)
  • Python
    from math import gcd
    A251411_list, l1, l2, s, b = [1,2,3], 3, 2, 4, {}
    for n in range(4,10**4):
        i = s
        while True:
            if not i in b and gcd(i,l1) == 1 and gcd(i,l2) > 1:
                l2, l1, b[i] = l1, i, 1
                while s in b:
                    b.pop(s)
                    s += 1
                if i == n:
                    A251411_list.append(n)
                break
            i += 1 # Chai Wah Wu, Dec 03 2014

A210493 Transits of Venus since the invention of the telescope by Julian Date (rounded).

Original entry on oeis.org

2317111, 2320030, 2364409, 2367328, 2405867, 2408786, 2453165, 2456085, 2458099, 2497542, 2541921, 2544841, 2583379, 2586298
Offset: 1

Author

Fred Espenak (fred.espenak-1(AT)nasa.gov) or (info01(AT)MrEclipse.com) and Robert G. Wilson v, Jan 23 2013

Keywords

Comments

"Transits of Venus are among the rarest of predictable astronomical phenomena. They occur in a pattern that generally repeats every 243 years, with pairs of transits eight years apart separated by long gaps of 121.5 years and 105.5 years. The periodicity is a reflection of the fact that the orbital periods of Earth and Venus are close to 8:13 and 243:395 commensurabilities." - Wikipedia
a(n) is approximately 365.25 * A171467(n+46). - Charles R Greathouse IV, Jan 24 2013

Examples

			05:19 07 Dec 1631 = 2317110.721528
18:25 04 Dec 1639 = 2320030.267361
05:19 06 Jun 1761 = 2364408.721528
22:25 03 Jun 1769 = 2367328.434028
04:05 09 Dec 1874 = 2405866.670139
17:06 06 Dec 1882 = 2408786.212500
08:19 08 Jun 2004 = 2453164.846528
01:28 06 Jun 2012 = 2456084.561111
02:48 11 Dec 2117 = 2458098.616667
16:01 08 Dec 2125 = 2497542.167361
11:30 11 Jun 2247 = 2541920.979167
04:36 09 Jun 2255 = 2544840.691667
01:40 13 Dec 2360 = 2583378.569444
14:43 10 Dec 2368 = 2586298.113194
		

References

  • Jean Meeus, Transits, Willmann-Bell, 1989.
  • Jean Meeus, Astronomical Algorithms, Second Ed., 1999.

Crossrefs

Cf. A171467.

A210996 Number of free polyominoes with 2n cells.

Original entry on oeis.org

1, 1, 5, 35, 369, 4655, 63600, 901971, 13079255, 192622052, 2870671950, 43191857688, 654999700403, 9999088822075, 153511100594603, 2368347037571252, 36695016991712879, 570694242129491412, 8905339105809603405, 139377733711832678648, 2187263896664830239467, 34408176607279501779592
Offset: 0

Author

Omar E. Pol, Sep 15 2012

Keywords

Comments

It appears that we can write A216492(n) < A216583(n) < A056785(n) < A056786(n) < a(n) < A210988(n) < A210986(n), if n >= 3. - Omar E. Pol, Sep 16 2012

Examples

			For n = 1 there is only one free domino. For n = 2 there are 5 free tetrominoes. For n = 3 there are 35 free hexominoes. For n = 4 there are 369 free octominoes (see link section).
		

Crossrefs

Programs

Formula

a(n) = A000105(2n).
a(n) = A213376(n) + A056785(n). - R. J. Mathar, Feb 08 2023

Extensions

More terms from John Mason, Apr 15 2023

A198388 Square root of first term of a triple of squares in arithmetic progression.

Original entry on oeis.org

1, 2, 7, 3, 7, 4, 17, 14, 5, 1, 6, 14, 23, 7, 31, 21, 8, 34, 9, 28, 21, 10, 49, 17, 11, 47, 2, 12, 35, 23, 13, 28, 51, 46, 71, 14, 62, 42, 7, 15, 16, 41, 35, 17, 41, 49, 79, 3, 68, 18, 97, 19, 56, 7, 42, 20, 69, 98, 34, 21, 93, 31, 63, 22, 85, 94, 23, 49, 73
Offset: 1

Author

Reinhard Zumkeller, Oct 24 2011

Keywords

Comments

There is a connection to |x-y| of Pythagorean triangles (x,y,z). See a comment on the primitive Pythagorean triangle case under A198441 which applies mutatis mutandis. - Wolfdieter Lang, May 23 2013

Examples

			Connection to Pythagorean triangles: a(2) = 2 because (in the notation of the Zumkeller link) (u,v,w) = 2*(1,5,7) and the corresponding Pythagorean triangle is 2*((7-1)/2,(1+7)/2,5) = 2*(3,4,5) with |x-y| = 2*(4-3) = 2. - _Wolfdieter Lang_, May 23 2013
		

Crossrefs

Programs

  • Haskell
    a198388 n = a198388_list !! (n-1)
    a198388_list = map (\(x,,) -> x) ts where
       ts = [(u,v,w) | w <- [1..], v <- [1..w-1], u <- [1..v-1],
                       w^2 - v^2 == v^2 - u^2]
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
    Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 1]] (* Jean-François Alcover, Oct 20 2021 *)

Formula

A198384(n) = a(n)^2.
A198439(n) = a(A198409(n)).