A109620 a(n) = (1/3)*n^3 - n^2 - (1/3)*n - 1.
-1, -2, -3, -2, 3, 14, 33, 62, 103, 158, 229, 318, 427, 558, 713, 894, 1103, 1342, 1613, 1918, 2259, 2638, 3057, 3518, 4023, 4574, 5173, 5822, 6523, 7278, 8089, 8958, 9887, 10878, 11933, 13054, 14243, 15502, 16833, 18238, 19719, 21278, 22917, 24638, 26443, 28334, 30313, 32382, 34543, 36798
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
Programs
-
Maple
seriestolist(series((2*x-1)*(x^2+1)/(x-1)^4, x=0,50)); -or- Floretion Algebra Multiplication Program, FAMP Code: -2jessumseq[ + .5'i + .5i' + .5'ik' + .5'ji' + e], Sumtype: sum[Y[15]] = sum[ * ]. Note: 2ibasesumseq = A002061, apart from initial term, -2jbasesumseq = A006527.
-
Mathematica
Table[n^3/3-n^2-n/3-1,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{-1,-2,-3,-2},60] (* Harvey P. Dale, Jul 21 2013 *)
Formula
a(0)=-1, a(1)=-2, a(2)=-3, a(3)=-2, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)- a(n-4). - Harvey P. Dale, Jul 21 2013
Comments