cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109624 Totally multiplicative sequence with a(p) = (p-1)*(p+3) = p^2+2p-3 for prime p.

Original entry on oeis.org

1, 5, 12, 25, 32, 60, 60, 125, 144, 160, 140, 300, 192, 300, 384, 625, 320, 720, 396, 800, 720, 700, 572, 1500, 1024, 960, 1728, 1500, 896, 1920, 1020, 3125, 1680, 1600, 1920, 3600, 1440, 1980, 2304, 4000, 1760, 3600, 1932, 3500, 4608, 2860, 2300, 7500, 3600
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := ((p - 1)*(p + 3))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 05 2022 *)
  • PARI
    a(n) = {f = factor(n); return (prod(k=1, #f~, ((f[k, 1]-1)*(f[k, 1]+3))^f[k, 2]));} \\ Michel Marcus, Jun 13 2013

Formula

Multiplicative with a(p^e) = ((p-1)*(p+3))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)-1)*(p(k)+3))^e(k).
a(n) = A003958(n) * A166591(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + 2*p - 4)) = 1.471999388763656342016756485604184156984049961181587531678650682804811302... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/(Pi^2 * Product_{p prime} (1 - 3/p^2 + 1/p^3 + 3/p^4)) = 0.6324191395... . - Amiram Eldar, Nov 05 2022