A109636 Let T(n,k) be the n-th k-almost prime. Then a(n) = T(n,k) such that k is minimal and for all m>0, T(n,k+m) >= 2^m * T(n,k).
2, 3, 9, 10, 27, 28, 30, 81, 84, 88, 90, 100, 104, 243, 252, 264, 270, 272, 280, 300, 304, 312, 729, 736, 756, 784, 792, 810, 816, 840, 880, 900, 912, 928, 936, 992, 1000, 1040, 2187, 2208, 2268, 2352, 2368, 2376, 2430, 2448, 2464, 2520, 2624
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Wikipedia, k-almost prime numbers.
Programs
-
Mathematica
a[n_] := Module[{p = Prime[Range[n]], pal}, pal = Transpose /@ Partition[NestList[Take[Union[Flatten[Outer[Times, #1, p]]], Length[#1]] &, p, n], 2, 1]; Complement @@ Transpose[Cases[pal, {k_, kk_} /; kk == 2*k, {2}]]] ; a[50] (* Peter Pein, Nov 10 2007 *)
-
Python
from itertools import count # uses function A078840_T from A078840 def A109636(n): a = A078840_T(1,n) for k in count(2): b = A078840_T(k,n) if b==(a<<1): return a a = b # Chai Wah Wu, Mar 30 2025
Extensions
Edited by Max Alekseyev, Mar 16 2007
More terms from Peter Pein, Mar 16 2007
Definition corrected by Chai Wah Wu, Mar 30 2025
Comments