A109655 Number of partitions of n^2 into up to n parts each no more than 2n, or of n(3n+1)/2 into exactly n distinct parts each no more than 3n.
1, 1, 3, 8, 33, 141, 676, 3370, 17575, 94257, 517971, 2900900, 16509188, 95220378, 555546058, 3273480400, 19456066175, 116521302221, 702567455381, 4261765991164, 25992285913221, 159303547578873, 980701254662294, 6061894625462492, 37609015174472628
Offset: 0
Keywords
Examples
a(3) = 8 since 3^2=9 can be partitioned into 3+3+3, 4+3+2, 4+4+1, 5+4, 5+3+1, 5+2+2, 6+3, or 6+2+1, while 3*(3*3+1)/2=15 can be partitioned into 6+5+4, 7+5+3, 7+6+2, 8+6+1, 8+5+2, 8+4+3, 9+5+1, or 9+4+2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
Crossrefs
Cf. A161407. - Reinhard Zumkeller, Jun 10 2009
Row n=3 of A204459. - Alois P. Heinz, Jan 18 2012
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(i
t*(2*i-t+1)/2, 0, `if`(n=0, 1, b(n, i-1, t) +`if`(n b(n*(3*n+1)/2, 3*n, n): seq(a(n), n=0..20); # Alois P. Heinz, Jan 18 2012 -
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[i
t*(2*i-t+1)/2, 0, If[n == 0, 1, b[n, i-1, t] + If[nJean-François Alcover, Oct 05 2015, after Alois P. Heinz *)
Formula
Extensions
More terms from Alois P. Heinz, Jan 18 2012