A109698 Number of partitions of n into parts each congruent to 2 mod 5.
1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 3, 2, 3, 3, 3, 4, 4, 4, 6, 4, 7, 5, 8, 7, 8, 9, 9, 10, 12, 11, 15, 12, 17, 15, 18, 19, 20, 22, 24, 24, 29, 26, 34, 31, 37, 38, 40, 44, 46, 49, 55, 53, 64, 60, 71, 71, 77, 83, 86, 93, 100, 101, 116, 112, 130, 129, 142, 149, 156, 168, 177
Offset: 0
Keywords
Examples
a(12)=2 since 12 = 12 = 2+2+2+2+2+2.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A284280.
Programs
-
Maple
g:=1/product(1-x^(2+5*i),i=0..20): gser:=series(g,x=0,86): seq(coeff(gser,x,n),n=0..82); # Emeric Deutsch, Feb 15 2006
-
Mathematica
nmax=100; CoefficientList[Series[Product[1/(1-x^(5*k+2)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)
-
PARI
Vec(prod(k=0, 100, 1/(1 - x^(5*k + 2))) + O(x^111)) \\ Indranil Ghosh, Mar 24 2017
Formula
G.f.: 1/Product_{j>=0} (1 - x^(2+5j)). - Emeric Deutsch, Feb 15 2006
a(n) ~ Gamma(2/5) * exp(Pi*sqrt(2*n/15)) / (2^(17/10) * 3^(1/5) * 5^(3/10)*Pi^(3/5) * n^(7/10)) * (1 + (11*Pi/(120*sqrt(30)) - 7*sqrt(3/10)/(5*Pi)) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284280(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 24 2017
Extensions
More terms from Emeric Deutsch, Feb 15 2006