cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109767 Triangle T(n,k), 0 <= k <= n, defined by T(n,k) = 2^k*A001497(n,k).

Original entry on oeis.org

1, 2, 2, 12, 12, 4, 120, 120, 48, 8, 1680, 1680, 720, 160, 16, 30240, 30240, 13440, 3360, 480, 32, 665280, 665280, 302400, 80640, 13440, 1344, 64, 17297280, 17297280, 7983360, 2217600, 403200, 48384, 3584, 128, 518918400, 518918400
Offset: 0

Views

Author

Philippe Deléham, Aug 12 2005

Keywords

Comments

Also square array of unsigned coefficients of Hermite polynomials.
T[n,k]is A128099(2n,k)*A001813(n-k). - Richard Turk, Sep 26 2017

Examples

			Rows begin:
     1
     2,    2,
    12,   12,   4,
   120,  120,  48,   8,
  1680, 1680, 720, 160, 16,
Unsigned coefficients of Hermite polynomials:
     1,     2,      4,       8, ...
     2,    12,     48,     160, ...
    12,   120,    720,    3360, ...
   120,  1680,  13440,   80640, ...
  1680, 30240, 302400, 2217600, ...
		

Crossrefs

Cf. A001497.

Programs

  • Magma
    /* As triangle */ [[Factorial(2*n-k)*2^k/(Factorial(k)*Factorial(n-k)): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 14 2015
  • Maple
    seq(seq((2*n-k)!*2^k/(k!*(n-k)!),k=0..n),n=0..10); # Robert Israel, Sep 26 2017
  • Mathematica
    y[n_, x_] := Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n-1/2, 1/x]; t[n_, k_] := 2^n*Coefficient[y[n, x], x, k]; Table[t[n, k], {n, 0, 8}, {k, n, 0, -1}] // Flatten (* or *) t[n_, k_] := (2*n - k)!*2^k/(k!*(n-k)!); Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 01 2013 *)
    Table[((2n-k)!*2^k)/(k!(n-k)!),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Nov 23 2017 *)

Formula

T(n,k) = (2n-k)!*2^k/(k!*(n-k)!).