A109776 Self-describing numbers: reading the number gives a (possibly redundant) description of the number.
22, 4444, 224444, 442244, 444422, 666666, 10123133, 10123331, 10143133, 10143331, 10153133, 10153331, 10163133, 10163331, 10173133, 10173331, 10183133, 10183331, 10193133, 10193331, 10212332, 10213223, 10232132
Offset: 1
Examples
"22" does indeed consist of "two 2's".
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10538
- The Prime Puzzles & Problems Connection by Carlos Rivera, Puzzle"> 324. Self-descriptive numbers.
Programs
-
Mathematica
fQ[n_] := Block[{id = IntegerDigits[n]}, If[ OddQ[ Length[id]], Return[False], Union[Reverse@# & /@ Tally[id]] == Union@ Partition[id, 2]]]; k = 1; lst = {}; While[k < 10^7, If[fQ@ k, AppendTo[lst, k]; Print[k]]; k++]; lst (* Robert G. Wilson v, Apr 27 2012 *)
Comments