A109796 a(n) = prime(1^4) + prime(2^4) + ... + prime(n^4).
2, 55, 474, 2093, 6730, 17357, 38748, 77621, 143308, 248037, 407558, 641437, 973380, 1432721, 2052922, 2874563, 3944166, 5314265, 7045924, 9206477, 11874460, 15134597, 19083406, 23826383, 29480190, 36172177, 44039724
Offset: 1
Keywords
Examples
a(1) = 2 because prime(1^4) = prime(1) = 2. a(2) = 55 because prime(1^4) + prime(2^4) = prime(1) + prime(16) = 2 + 53. a(3) = 474 because prime(1^4) + prime(2^4) + prime(3^4) = prime(1) + prime(16) + prime(81) = 2 + 53 + 419. a(4) = 2093 because prime(1^4) + prime(2^4) + prime(3^4) + prime(4^4) = 2 + 53 + 419 + prime(256) = 2 + 53 + 419 + 1619. a(8) = 2 + 53 + 419 + 1619 + 4637 + 10627 + 21391 + 38873 = 77621 (which is prime). a(12) = 2 + 53 + 419 + 1619 + 4637 + 10627 + 21391 + 38873 + 65687 + 104729 + 159521 + 233879 = 641437 (which is prime). a(28) = 2 + 53 + 419 + 1619 + 4637 + 10627 + 21391 + 38873 + 65687 + 104729 + 159521 + 233879 + 331943 + 459341 + 620201 + 821641 + 1069603 + 1370099 + 1731659 + 2160553 + 2667983 + 3260137 + 3948809 + 4742977 + 5653807 + 6691987 + 7867547 + 9195889 = 53235613 (which is prime). It is a coincidence that a(1), a(2) and a(3) are all palindromes.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..100
- Eric Weisstein's World of Mathematics, Biquadratic Number.
Programs
-
Mathematica
Accumulate[Table[Prime[n^4],{n,30}]] (* Harvey P. Dale, Feb 02 2019 *)
-
PARI
A109796(n)={ sum(i=1,n,prime(i^4)) } /* R. J. Mathar, Mar 09 2012 */
Comments