cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109796 a(n) = prime(1^4) + prime(2^4) + ... + prime(n^4).

Original entry on oeis.org

2, 55, 474, 2093, 6730, 17357, 38748, 77621, 143308, 248037, 407558, 641437, 973380, 1432721, 2052922, 2874563, 3944166, 5314265, 7045924, 9206477, 11874460, 15134597, 19083406, 23826383, 29480190, 36172177, 44039724
Offset: 1

Views

Author

Jonathan Vos Post, Aug 15 2005

Keywords

Comments

Analog of prime(1^2) + prime(2^2) + ... + prime(n^2) (A109724). For a(n) to be prime for n > 1 it is necessary but not sufficient that n == 0 (mod 4).

Examples

			a(1) = 2 because prime(1^4) = prime(1) = 2.
a(2) = 55 because prime(1^4) + prime(2^4) = prime(1) + prime(16) = 2 + 53.
a(3) = 474 because prime(1^4) + prime(2^4) + prime(3^4) = prime(1) + prime(16) + prime(81) = 2 + 53 + 419.
a(4) = 2093 because prime(1^4) + prime(2^4) + prime(3^4) + prime(4^4) = 2 + 53 + 419 + prime(256) = 2 + 53 + 419 + 1619.
a(8) = 2 + 53 + 419 + 1619 + 4637 + 10627 + 21391 + 38873 = 77621 (which is prime).
a(12) = 2 + 53 + 419 + 1619 + 4637 + 10627 + 21391 + 38873 + 65687 + 104729 + 159521 + 233879 = 641437 (which is prime).
a(28) = 2 + 53 + 419 + 1619 + 4637 + 10627 + 21391 + 38873 + 65687 + 104729 + 159521 + 233879 + 331943 + 459341 + 620201 + 821641 + 1069603 + 1370099 + 1731659 + 2160553 + 2667983 + 3260137 + 3948809 + 4742977 + 5653807 + 6691987 + 7867547 + 9195889 = 53235613 (which is prime).
It is a coincidence that a(1), a(2) and a(3) are all palindromes.
		

Crossrefs

First differences are A109791.

Programs

Formula

a(n) = Sum_{i=1..n} A000040(A000583(i)).