cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109822 Triangle read by rows: T(n,1)=1, T(n,k) = T(n-1,k) + (n-1)T(n-1, k-1) for 1 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 7, 18, 24, 1, 11, 46, 96, 120, 1, 16, 101, 326, 600, 720, 1, 22, 197, 932, 2556, 4320, 5040, 1, 29, 351, 2311, 9080, 22212, 35280, 40320, 1, 37, 583, 5119, 27568, 94852, 212976, 322560, 362880, 1, 46, 916, 10366, 73639, 342964, 1066644
Offset: 1

Views

Author

Emeric Deutsch, Jul 03 2005

Keywords

Comments

T(n,n) = n!. Sum of row n is the signless Stirling number of the first kind s(n,2)(A000254). T(n,k) = A096747(n,k) for 1 <= k <= n.

Examples

			T(5,3) = 46 because 18 + 4*7 = 46.
Triangle begins:
Row 1:                    1
Row 2:                 1     2
Row 3:              1     4     6
Row 4:           1     7    18    24
Row 5:        1    11    46    96   120
Row 6:     1    16   101   326   600   720
Row 7:  1    22   197   932  2556  4320  5040
		

Crossrefs

Programs

  • Maple
    with(combinat): T:=(n,k)->add(abs(stirling1(n,n-i)),i=0..k-1): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form T:=proc(n,k) if k=1 then 1 elif k=n then n! else T(n-1,k)+(n-1)*T(n-1,k-1) fi end: for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form. - Emeric Deutsch, Jul 03 2005
    A109822_row := proc(n) local k,i;
    add(add(abs(combinat[stirling1](n, n-i)), i=0..k)*x^(n-k-1),k=0..n-1);
    seq(coeff(%,x,n-k),k=1..n) end:
    seq(print(A109822_row(n)),n=1..7); # Peter Luschny, Sep 18 2011
  • Mathematica
    Table[Sum[Abs@ StirlingS1[n, n - i], {i, 0, k - 1}], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Aug 17 2017 *)

Formula

T(n, k) = Sum_{i=0..k-1} |stirling1(n, n-i)| for 1 <= k <= n.
From Peter Bala, Jul 08 2012: (Start)
E.g.f.: x/(1-x)*{1/(1-x*z)^(1/x) - 1/(1-x*z)} = x*z + (x + 2*x^2)*z^2/2! + (x + 4*x^2 + 6*x^3)*z^3/3! + ... Cf. the e.g.f. of A059518.
(End)