A096747 Triangle read by rows: T(n,1) = 1, T(n,k) = T(n-1,k)+(n-1)*T(n-1,k-1) for 1<=k<=n+1.
1, 1, 1, 1, 2, 2, 1, 4, 6, 6, 1, 7, 18, 24, 24, 1, 11, 46, 96, 120, 120, 1, 16, 101, 326, 600, 720, 720, 1, 22, 197, 932, 2556, 4320, 5040, 5040, 1, 29, 351, 2311, 9080, 22212, 35280, 40320, 40320, 1, 37, 583, 5119, 27568, 94852, 212976, 322560, 362880
Offset: 0
Examples
Triangle begins: *0.........................1 *1......................1.....1 *2...................1.....2.....2 *3................1.....4.....6.....6 *4.............1.....7....18....24....24 *5..........1....11....46....96...120...120 *6.......1....16...101...326...600...720...720 *7....1....22...197...932..2556..4320..5040..5040 T(5,3)=46 because 4*7+18=46
Links
- Robert Israel, Table of n, a(n) for n = 0..10152 (rows 0..141, flattened)
- R. P. Stanley, Ordering events in Minkowski space, arXiv:math/0501256 [math.CO], 2005.
Programs
-
Maple
T:=proc(n,k) if k=1 then 1 elif k=n+1 then n! else T(n-1,k)+(n-1)*T(n-1,k-1) fi end: for n from 0 to 11 do seq(T(n,k),k=1..n+1) od; # yields sequence in triangular form with(combinat): T:=(n,k)->sum(abs(stirling1(n,n-i)),i=0..k-1): for n from 0 to 11 do seq(T(n,k),k=1..n+1) od; # yields sequence in triangular form; Emeric Deutsch, Jul 03 2005
-
Mathematica
T[n_, k_] := Sum[Abs[StirlingS1[n, n - i]], {i, 0, k}]; T[0, 0] := 1; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 08 2016 *)
-
Sage
@CachedFunction def T(n,k): if n == 0: return 1 if k < 0: return 0 return T(n-1,k)+(n-1)*T(n-1,k-1) for n in range(9): print([T(n,k) for k in (0..n)]) # Peter Luschny, Sep 15 2014
Formula
T(n+1, i) = n*T(n, i-1)+T(n, i)
T(n, k) = sum(|stirling1(n, n-i)|, i=0..k-1) for 1<=k<=n. - Emeric Deutsch, Jul 03 2005
E.g.f. as triangle: g(x,y) = Sum_{n>=0} Sum_{1<=k<=n+1} T(n,k) x^n y^k/n! where
g(x,y) = -y^2/((y-1)*(x*y-1)) - (1-x*y)^(-1/y)*(-y+y^2/(y-1)). - Robert Israel, Nov 28 2016
Extensions
More terms from Emeric Deutsch, Jul 03 2005
Comments