A109905 a(n) = greatest prime of the form k*(n-k) +1. 0 if no such prime exists.
0, 2, 3, 5, 7, 0, 13, 17, 19, 17, 31, 37, 43, 41, 37, 61, 73, 73, 89, 101, 109, 113, 131, 109, 157, 89, 181, 197, 211, 0, 241, 257, 271, 281, 307, 181, 337, 353, 379, 401, 421, 433, 463, 449, 487, 521, 547, 577, 601, 617, 631, 677, 701, 0, 757, 769, 811, 761, 859, 757
Offset: 1
Keywords
Examples
a(15) = 37 as 1*14 +1 = 16, 2*13 +1 = 27 are composite but 3*12 +1= 37 is a prime. a(6) = 0 as 1*5 +1=6, 2*4 +1=9, 3*3 +1 = 10 are all composite.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local k; for k from floor(n/2) to 1 by -1 do if isprime(k*(n-k)+1) then return k*(n-k)+1 fi od: 0 end proc: map(f, [$1..100]); # Robert Israel, Feb 23 2018
-
Mathematica
Table[Max@Prepend[Select[Table[k (n - k) + 1, {k, n/2}], PrimeQ], 0], {n, 60}] (* Ivan Neretin, Feb 23 2018 *)
-
PARI
{ a(n) = forstep(k=n\2,1,-1,if(isprime(k*(n-k)+1),return(k*(n-k)+1)));return(0) } \\ Max Alekseyev, Oct 04 2005
Extensions
More terms from Max Alekseyev, Oct 04 2005
Comments