A109954 Riordan array (1/(1+x)^3,x/(1+x)^2).
1, -3, 1, 6, -5, 1, -10, 15, -7, 1, 15, -35, 28, -9, 1, -21, 70, -84, 45, -11, 1, 28, -126, 210, -165, 66, -13, 1, -36, 210, -462, 495, -286, 91, -15, 1, 45, -330, 924, -1287, 1001, -455, 120, -17, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1, 66, -715, 3003, -6435, 8008, -6188, 3060, -969, 190, -21, 1
Offset: 0
Examples
Triangle T(n, k) begins: n/k 0 1 2 3 4 5 6 7 8 9 10 0: 1 1: -3 1 2: 6 -5 1 3: -10 15 -7 1 4: 15 -35 28 -9 1 5: -21 70 -84 45 -11 1 6: 28 -126 210 -165 66 -13 1 7: -36 210 -462 495 -286 91 -15 1 8: 45 -330 924 -1287 1001 -455 120 -17 1 9: -55 495 -1716 3003 -3003 1820 -680 153 -19 1 10: 66 -715 3003 -6435 8008 -6188 3060 -969 190 -21 1 ... Reformatted and extended by Wolfdieter Lang, Oct 24 2012.
Programs
-
Mathematica
c0 = 1; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 2 - x + c0; p[x_, n_] := p[x, n] = (2 + c0 - x)*p[x, n - 1] + (-1 - c0 (2 - x))*p[x, n - 2] + c0*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] - Roger L. Bagula, Apr 08 2008
Formula
Number triangle T(n, k) = (-1)^(n+k)*binomial(n+k+2, 2*k+2) [offset (0, 0)].
Comments