A143858
Number of pairwise disjoint unions of m integer-to-integer subintervals of [0,n]; a rectangular array by antidiagonals, n>=2m-1, m>=1.
Original entry on oeis.org
1, 3, 1, 6, 5, 1, 10, 15, 7, 1, 15, 35, 28, 9, 1, 21, 70, 84, 45, 11, 1, 28, 126, 210, 165, 66, 13, 1, 36, 210, 462, 495, 286, 91, 15, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 55, 495, 1716, 3003, 3003, 1820, 680, 153, 19, 1, 66, 715, 3003, 6435, 8008, 6188, 3060
Offset: 1
R(2,4) counts these unions of 2 subintervals of [0,4]: [0,1]U[2,3], [0,1]U[2,4], [0,1]U[3,4], [0,2]U[3,4], [1,2]U[3,4].
1 3 6 10 15 21 28 36 45 55 66 78
0 0 1 5 15 35 70 126 210 330 495 715
0 0 0 0 1 7 28 84 210 462 924 1716
0 0 0 0 0 0 1 9 45 165 495 1287
0 0 0 0 0 0 0 0 1 11 66 286
0 0 0 0 0 0 0 0 0 0 1 13
-
Seen as a triangle read by rows
a143858 n k = a143858_tabl !! (n-1) !! k
a143858_row n = a143858_tabl !! (n-1)
a143858_tabl = map ((++ [1]) . tail) a258993_tabl
-- Reinhard Zumkeller, Jun 22 2015
-
A143858 := proc(m,n)
binomial(n-1+2*m,2*m) ;
end proc:
seq(seq( A143858(n,d-n),n=1..d-1),d=2..8) ; # R. J. Mathar, Nov 16 2023
A050155
Triangle T(n,k), k>=0 and n>=1, read by rows defined by: T(n,k) = (2k+3)*binomial(2n,n-k-1)/(n+k+2).
Original entry on oeis.org
1, 3, 1, 9, 5, 1, 28, 20, 7, 1, 90, 75, 35, 9, 1, 297, 275, 154, 54, 11, 1, 1001, 1001, 637, 273, 77, 13, 1, 3432, 3640, 2548, 1260, 440, 104, 15, 1, 11934, 13260, 9996, 5508, 2244, 663, 135, 17, 1, 41990, 48450, 38760, 23256, 10659, 3705, 950, 170, 19, 1
Offset: 1
1;
3, 1;
9, 5, 1;
28, 20, 7, 1;
90, 75, 35, 9, 1;
297, 275, 154, 54, 11, 1;
...
- Alois P. Heinz, Rows n = 1..141, flattened
- R. K. Guy, Catwalks, Sansteps and Pascal Pyramids, J. Integer Seq., Vol. 3 (2000), #00.1.6
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
- A. Papoulis, A new method of inversion of the Laplace transform, Quart. Appl. Math 14 (1957), 405-414.
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
- _Zoran Sunic_, Self-Describing Sequences and the Catalan Family Tree, Electronic Journal of Combinatorics, 10 (2003) #N5.
-
T:= (n, k)-> (2*k+3)*binomial(2*n, n-k-1)/(n+k+2):
seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Jan 19 2013
-
T[n_, k_] := (2*k + 3)*Binomial[2*n, n - k - 1]/(n + k + 2);
Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 21 2016 *)
A123970
Triangle read by rows: T(0,0)=1; T(n,k) is the coefficient of x^(n-k) in the monic characteristic polynomial of the n X n matrix (min(i,j)) (i,j=1,2,...,n) (0 <= k <= n, n >= 1).
Original entry on oeis.org
1, 1, -1, 1, -3, 1, 1, -6, 5, -1, 1, -10, 15, -7, 1, 1, -15, 35, -28, 9, -1, 1, -21, 70, -84, 45, -11, 1, 1, -28, 126, -210, 165, -66, 13, -1, 1, -36, 210, -462, 495, -286, 91, -15, 1, 1, -45, 330, -924, 1287, -1001, 455, -120, 17, -1, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1, 1, -66, 715, -3003, 6435, -8008
Offset: 0
Triangular sequence (gives the odd Tutte-Beraha constants as roots!) begins:
1;
1, -1;
1, -3, 1;
1, -6, 5, -1;
1, -10, 15, -7, 1;
1, -15, 35, -28, 9, -1;
1, -21, 70, -84, 45, -11, 1;
1, -28, 126, -210, 165, -66, 13, -1;
1, -36, 210, -462, 495, -286, 91, -15, 1;
1, -45, 330, -924, 1287, -1001, 455, -120, 17, -1;
...
- S. Beraha, Infinite non-trivial families of maps and chromials, Ph.D. thesis. Baltimore, MD: Johns Hopkins University, 1975.
- Steven R. Finch, Mathematical Constants (Encyclopedia of Mathematics and its Applications), chapter 5.25.
- W. T. Tutte, "More about Chromatic Polynomials and the Golden Ratio." In Combinatorial Structures and their Applications: Proc. Calgary Internat. Conf., Calgary, Alberta, 1969. New York: Gordon and Breach, p. 439, 1969.
Modulo signs, inverse matrix to
A039599.
-
/* As triangle */ [[(-1)^k*Binomial(n + k, 2*k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jan 04 2019
-
with(linalg): m:=(i,j)->min(i,j): M:=n->matrix(n,n,m): T:=(n,k)->coeff(charpoly(M(n),x),x,n-k): 1; for n from 1 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
An[d_] := MatrixPower[Table[Min[n, m], {n, 1, d}, {m, 1, d}], -1]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d, 1, 20}]]; Flatten[%]
A220670
Coefficient triangle for powers of x^2 of polynomials appearing in a generalized Melham conjecture on alternating sums of third powers of Chebyshev's S polynomials with odd indices. Coefficients in powers of x^2 of 2 + (-1)^n*S(2*n,x).
Original entry on oeis.org
3, 3, -1, 3, -3, 1, 3, -6, 5, -1, 3, -10, 15, -7, 1, 3, -15, 35, -28, 9, -1, 3, -21, 70, -84, 45, -11, 1, 3, -28, 126, -210, 165, -66, 13, -1, 3, -36, 210, -462, 495, -286, 91, -15, 1, 3, -45, 330, -924, 1287, -1001, 455, -120, 17, -1, 3, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1
Offset: 0
The triangle a(n,p) begins:
n\p 0 1 2 3 4 5 6 7 8 9 10 ...
0: 3
1: 3 -1
2: 3 -3 1
3: 3 -6 5 -1
4: 3 -10 15 -7 1
5: 3 -15 35 -28 9 -1
6: 3 -21 70 -84 45 -11 1
7: 3 -28 126 -210 165 -66 13 -1
8: 3 -36 210 -462 495 -286 91 -15 1
9: 3 -45 330 -924 1287 -1001 455 -120 17 -1
10: 3 -55 495 -1716 3003 -3003 1820 -680 153 -19 1
...
Row n=2: H(1,2,x^2) := (-3+x^2)*(0 - (S(1,x)/x)^3 + (S(3,x)/x)^3)/((1 - S(4,x))/x^2)^2 = 3 - 3*x^2 + x^4 =
2 + S(4,x).
Row n=3: H(1,3,x^2) := (-3+x^2)*(0 - (S(1,x)/x)^3 + (S(3,x)/x)^3 - (S(5,x)/x)^3 )/((1 + S(6,x))/x^2)^2 = 3-6*x^2+5*x^4-x^6 = 2 - S(6,x).
- R. S. Melham, Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers, The Fibonacci Quart. 46/47 (2008/2009), no. 4, 312-315.
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- H. Prodinger, On a sum of Melham and its variants, The Fibonacci Quart. 46/47 (2008/2009), no. 3, 207-215.
- T. Wang and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie, Tome 55(103), No.1, (2012) 95-103.
A092879
Triangle of coefficients of the product of two consecutive Fibonacci polynomials.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 5, 7, 2, 1, 7, 16, 13, 3, 1, 9, 29, 40, 22, 3, 1, 11, 46, 91, 86, 34, 4, 1, 13, 67, 174, 239, 166, 50, 4, 1, 15, 92, 297, 541, 553, 296, 70, 5, 1, 17, 121, 468, 1068, 1461, 1163, 496, 95, 5, 1, 19, 154, 695, 1912, 3300, 3544, 2269, 791, 125, 6, 1, 21, 191
Offset: 0
Triangle begins;
1;
1,1;
1,3,2;
1,5,7,2;
1,7,16,13,3;
1,9,29,40,22,3;
...
F(3,x) = 1 + 2*x and F(4,x) = 1 + 3*x + x^2 so F(3,x)*F(4,x)=(1 + 3*x + x^2)*(1 + 2*x) = 1 + 5*x + 7*x^2 + 2*x^3 leads to T(3,k) = [1,5,7,2].
-
T:=proc(n,k): add((-1)^(i+k)*binomial(i+2*n-2*k+1,i), i=0..k) end: seq(seq(T(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
T:=proc(n,k): coeff(F(n, x)*F(n+1, x), x, k) end: F:=proc(n, x) option remember: if n=0 then 1 elif n=1 then 1 else procname(n-1, x) + x*procname(n-2, x) fi: end: seq(seq(T(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
-
c0 = -1; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 2 - x + c0; p[x_, n_] :=p[x, n] = (2 + c0 -x)*p[x, n - 1] + (-1 - c0 (2 - x))*p[x, n - 2] + c0*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[Reverse[CoefficientList[p[x, n], x]], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 09 2008 *)
-
T(n,k)=local(m);if(k<0 || k>n,0,n++; m=contfracpnqn(matrix(2,n,i,j,x)); polcoeff(m[1,1]*m[2,1]/x^n,n-k))
A186024
Inverse of eigentriangle of triangle A085478.
Original entry on oeis.org
1, -1, 1, -1, -1, 1, -1, -3, -1, 1, -1, -6, -5, -1, 1, -1, -10, -15, -7, -1, 1, -1, -15, -35, -28, -9, -1, 1, -1, -21, -70, -84, -45, -11, -1, 1, -1, -28, -126, -210, -165, -66, -13, -1, 1, -1, -36, -210, -462, -495, -286, -91, -15, -1, 1, -1, -45, -330, -924, -1287, -1001, -455, -120, -17, -1, 1
Offset: 0
Triangle begins
1,
-1, 1,
-1, -1, 1,
-1, -3, -1, 1,
-1, -6, -5, -1, 1,
-1, -10, -15, -7, -1, 1,
-1, -15, -35, -28, -9, -1, 1,
-1, -21, -70, -84, -45, -11, -1, 1,
-1, -28, -126, -210, -165, -66, -13, -1, 1,
-1, -36, -210, -462, -495, -286, -91, -15, -1, 1,
-1, -45, -330, -924, -1287, -1001, -455, -120, -17, -1, 1
A220671
Coefficient array for powers of x^2 of polynomials appearing in a generalized Melham conjecture on alternating sums of fifth powers of Chebyshev S polynomials with odd indices.
Original entry on oeis.org
-14, 15, -20, 8, -1, 55, -170, 221, -153, 59, -12, 1, 115, -670, 1773, -2696, 2549, -1538, 589, -138, 18, -1, 195, -1850, 8215, -21530, 36330, -41110, 31865, -17080, 6314, -1579, 255, -24, 1, 295, -4150, 27735, -110795, 289540, -518290, 654595, -595805, 396316, -193906, 69641, -18129, 3327, -408, 30, -1
Offset: 1
The array a(n,p) begins:
n\p 0 1 2 3 4 5 6 7 8 9 10 11 12
0: -14
1: 15 -20 8 -1
2: 55 -170 221 -153 59 -12 1
3: 115 -670 1773 -2696 2549 -1538 589 -138 18 -1
4: 195 -1850 8215 -21530 36330 -41110 31865 -17080 6314 -1579 255 -24 1
...
Row n=5: [295, -4150, 27735, -110795, 289540, -518290, 654595, -595805, 396316, -193906, 69641, -18129, 3327, -408, 30, -1],
Row n=6: [415, -8120, 76118, -429531, 1599441, -4125672, 7621983, -10350335, 10539787, -8164410, 4853792, -2222153, 781514, -209172, 41823, -6047, 597, -36, 1].
A135552
Riordan array (1/((1-2x)(1-x)^2), -x/(1-x)^2).
Original entry on oeis.org
1, 4, -1, 11, -6, 1, 26, -22, 8, -1, 57, -64, 37, -10, 1, 120, -163, 130, -56, 12, -1, 247, -382, 386, -232, 79, -14, 1, 502, -848, 1024, -794, 378, -106, 16, -1, 1013, -1816, 2510, -2380, 1471, -576, 137, -18, 1, 2036, -3797, 5812, -6476, 4944, -2517, 834, -172, 20, -1, 4083, -7814, 12911, -16384, 14893, -9402, 4048, -1160, 211, -22, 1
Offset: 1
{1},
{4, -1},
{11, -6, 1},
{26, -22, 8, -1},
{57, -64, 37, -10, 1},
{120, -163, 130, -56, 12, -1},
{247, -382, 386, -232, 79, -14, 1},
{502, -848, 1024, -794, 378, -106, 16, -1},
{1013, -1816, 2510, -2380, 1471, -576, 137, -18, 1},
{2036, -3797, 5812, -6476, 4944, -2517, 834, -172, 20, -1},
{4083, -7814, 12911, -16384, 14893, -9402, 4048, -1160, 211, -22, 1}
-
Clear[p, x, n, a]; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 4 - x; p[x_, n_] := p[x, n] = (4 - x)*p[x, n - 1] + (-5 + 2*x)*p[x, n - 2] + 2*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a]
Showing 1-8 of 8 results.
Comments