cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A186025 a(n) = 0^n + 1 - F(n-1)^2 - F(n)^2, where F = A000045.

Original entry on oeis.org

1, 0, -1, -4, -12, -33, -88, -232, -609, -1596, -4180, -10945, -28656, -75024, -196417, -514228, -1346268, -3524577, -9227464, -24157816, -63245985, -165580140, -433494436, -1134903169, -2971215072, -7778742048, -20365011073, -53316291172, -139583862444
Offset: 0

Views

Author

Paul Barry, Feb 10 2011

Keywords

Comments

Row sums of number triangle A186024.

Crossrefs

Programs

  • Magma
    [0^n+1-Fibonacci(n-1)^2-Fibonacci(n)^2: n in [0..30]]; // Vincenzo Librandi, Apr 24 2015
    
  • Mathematica
    Join[{1}, Table[0^n + 1 - Fibonacci[n - 1]^2 - Fibonacci[n]^2, {n, 30}]] (* Vincenzo Librandi, Apr 24 2015 *)
    LinearRecurrence[{4,-4,1},{1,0,-1,-4},30] (* Harvey P. Dale, Dec 16 2015 *)
  • PARI
    x='x+O('x^50); Vec((1-4*x+3*x^2-x^3)/(1-4*x+4*x^2-x^3)) \\ G. C. Greubel, Jul 24 2017

Formula

G.f.: (1-4x+3x^2-x^3)/(1-4x+4x^2-x^3) = (1-4x+3x^2-x^3)/((1-x)(1-3x+x^2)).
a(n) = -A027941(n-1), n>0. - R. J. Mathar, Mar 21 2013

Extensions

More terms from Vincenzo Librandi, Apr 24 2015

A186023 Eigentriangle of triangle A085478.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 4, 1, 1, 23, 15, 6, 1, 1, 106, 68, 28, 8, 1, 1, 567, 365, 145, 45, 10, 1, 1, 3434, 2215, 877, 262, 66, 12, 1, 1, 23137, 14917, 5936, 1750, 427, 91, 14, 1, 1, 171174, 110324, 43936, 13020, 3108, 648, 120, 16, 1, 1, 1376525, 887232, 353067, 104904, 25125, 5091, 933, 153, 18, 1, 1
Offset: 0

Views

Author

Paul Barry, Feb 10 2011

Keywords

Comments

First column is A125273. Inverse of A186024. Rows sums are A125273(n)*(2-0^n).

Examples

			Triangle begins
       1;
       1,      1;
       2,      1,     1;
       6,      4,     1,     1;
      23,     15,     6,     1,    1;
     106,     68,    28,     8,    1,   1;
     567,    365,   145,    45,   10,   1,   1;
    3434,   2215,   877,   262,   66,  12,   1,  1;
   23137,  14917,  5936,  1750,  427,  91,  14,  1, 1;
  171174, 110324, 43936, 13020, 3108, 648, 120, 16, 1, 1;
		

Crossrefs

Showing 1-2 of 2 results.