cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109955 Number triangle binomial(n+2k,3k).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 7, 1, 1, 20, 28, 10, 1, 1, 35, 84, 55, 13, 1, 1, 56, 210, 220, 91, 16, 1, 1, 84, 462, 715, 455, 136, 19, 1, 1, 120, 924, 2002, 1820, 816, 190, 22, 1, 1, 165, 1716, 5005, 6188, 3876, 1330, 253, 25, 1, 1, 220, 3003, 11440, 18564, 15504, 7315, 2024
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Riordan array (1/(1-x),x/(1-x)^3).
Inverse array is A109956. Row sums are A052544.
Diagonal sums are A034943(n+1).

Examples

			Rows begin
1;
1,1;
1,4,1;
1,10,7,1;
1,20,28,10,1;
1,35,84,55,13,1;
		

Programs

  • PARI
    tabl(nn) = {my(m = matrix(nn, nn, n, k, if (nMichel Marcus, Nov 20 2015

Formula

Number triangle T(n, k) = binomial(n+2k, 3k).
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k) + T(n-1,k-1). - Philippe Deléham, Feb 18 2012
G.f.: (1-x)^2/((1-x)^3-y*x). - Philippe Deléham, Feb 18 2012
Sum_{k, 0<=k<=n} T(n,k)*x^k = A185963(n), A000012(n), A052544(n), A049086(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Feb 18 2012