A109956 Inverse of Riordan array (1/(1-x), x/(1-x)^3), A109955.
1, -1, 1, 3, -4, 1, -12, 18, -7, 1, 55, -88, 42, -10, 1, -273, 455, -245, 75, -13, 1, 1428, -2448, 1428, -510, 117, -16, 1, -7752, 13566, -8379, 3325, -910, 168, -19, 1, 43263, -76912, 49588, -21252, 6578, -1472, 228, -22, 1, -246675, 444015, -296010, 134550, -45630, 11700, -2223, 297, -25, 1
Offset: 0
Examples
Triangle begins: 1; -1, 1; 3, -4, 1; -12, 18, -7, 1; 55, -88, 42, -10, 1; -273, 455, -245, 75, -13, 1; ...
Links
- Paul Barry, d-orthogonal polynomials, Fuss-Catalan matrices and lattice paths, arXiv:2505.16718 [math.CO], 2025. See p. 13.
- Paul Drube, Generalized Path Pairs and Fuss-Catalan Triangles, arXiv:2007.01892 [math.CO], 2020. See Figure 4 p. 8 (up to signs).
Programs
-
Maple
# Function RiordanSquare defined in A321620. tt := sin(arcsin(3*sqrt(x*3/4))/3)/sqrt(x*3/4): R := RiordanSquare(tt, 11): seq(seq(LinearAlgebra:-Row(R,n)[k]*(-1)^(n+k), k=1..n), n=1..11); # Peter Luschny, Nov 27 2018
-
Mathematica
T[n_, k_] := (-1)^(n - k)((3k + 1)/(2n + k + 1)) Binomial[3n, n - k]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
-
PARI
tabl(nn) = {my(m = matrix(nn, nn, n, k, if (n
Michel Marcus, Nov 20 2015
Formula
Number triangle T(n, k) = (-1)^(n-k)*((3k+1)/(2n+k+1))*binomial(3n, n-k).
From Werner Schulte, Oct 27 2015: (Start)
If u(m,n) = (-1)^n*(Sum_{k=0..n} T(n,k)*((m+1)*k+1)) and v(m,n) = (-1)^n*(Sum_{k=0..n} (-1)^k*T(n,k)*m^k) and D(x) is the g.f. of A001764 then P(m,x) = Sum_{n>=0} u(m,n)*x^n = 1-(m+1)*x*D(x)^2 and Q(m,x) = Sum_{n>=0} v(m,n)*x^n = 1/P(m,x).
If G(k,x) is the g.f. of column k (k>=0) then G(k,x) = G(0,x)^(3*k+1). (End)
Comments