cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109965 Sum_i {i

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 10, 13, 16, 20, 24, 28, 33, 38, 44, 50, 57, 64, 72, 80, 88, 97, 106, 116, 126, 137, 148, 160, 172, 185, 198, 212, 226, 241, 256, 272, 288, 304, 321, 338, 356, 374, 393, 412, 432, 452, 473, 494, 516, 538, 561, 584, 608, 632, 657, 682, 708, 734
Offset: 0

Views

Author

Henry Bottomley, Jul 06 2005

Keywords

Comments

The recursion to generate this sequence (excluding the additional extra 1 at the outset) occurs in Chapter 3, Exercise 28, page 97 in Graham, Knuth and Patashnik, Concrete Mathematics, 2nd Edition, Addison Wesley, 1994. A solution is provided on page 509. - Steve Tanny (tanny(AT)math.utoronto.ca), Apr 02 2008

Examples

			a(5) = floor(sqrt(1)) + floor(sqrt(1)) + floor(sqrt(2)) + floor(sqrt(3)) + floor(sqrt(4)) = 1 + 1 + 1 + 1 + 2 = 6.
j=3, k=5: a(29)=172, a(30)=185. [_Paul Weisenhorn_, Jun 26 2010]
		

Crossrefs

Essentially the same as A002984.
Cf. A109964.

Programs

  • Maple
    a(0):=1: c:=0: for n from 1 to 100 do
    a(n):=a(n-1)+c: c:=floor(sqrt(a(n))): end do: # Paul Weisenhorn, Jun 22 2010
    a(0)=a(1)=b(0)=1;
    for n from 1 to 100 do
    b(n)=floor(sqrt(a(n))): a(n+1)=a(n)+b(n): end do:
    a(n)=A109965(n); b(n)=A109964(n); # Paul Weisenhorn, Jun 26 2010
  • Mathematica
    Prepend[RecurrenceTable[{a[n] == a[n - 1] + Floor[a[n - 1]^(1/2)], a[0] == 1}, a, {n, 0, 57}], 1] (* Geoffrey Critzer, May 25 2013 *)
    Join[{1},NestList[#+Floor[Sqrt[#]]&,1,60]] (* Harvey P. Dale, Oct 31 2018 *)

Formula

a(n) = a(n-1)+floor(sqrt(a(n-1))) = a(n-1)+A109964(n-1) for n>1.
Contribution from Paul Weisenhorn, Jun 26 2010: (Start)
a(2^(j+1)+j+2*k)=2^(2*j)+2^j*(2*k+1)+k*(k-1);
a(2^(j+1)+j+2*k+1)=2^(2*j)+2^j*(2*k+2)+k^2;
a(2^(j+1)+j-1)=2^(2*j); j=0..infinity; k=0..(2^j-1). (End)