A109968 Number of partitions of n into decimal repdigits of distinct digits.
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 16, 18, 20, 21, 24, 24, 27, 27, 30, 30, 30, 31, 32, 32, 31, 32, 31, 32, 29, 31, 29, 30, 28, 28, 28, 27, 29, 27, 28, 26, 30, 28, 30, 29, 30, 30, 31, 31, 32, 35, 31, 38, 33, 35, 34, 36, 38, 39, 38, 37, 39, 38, 43, 40, 44, 42, 44, 43, 44, 44
Offset: 0
Examples
a(60)=38: 60 = 55+4+1 = 55+3+2 = 44+11+5 = 44+11+3+2 = 44+9+7 = 44+9+6+1 = 44+9+5+2 = 44+8+7+1 = 44+8+6+2 = 44+8+5+3 = 44+8+5+2+1 = 44+7+6+3 = 44+7+6+2+1 = 44+7+5+3+1 = 44+6+5+3+2 = 33+22+5 = 33+22+4+1 = 33+11+9+7 = 33+11+9+5+2 = 33+11+8+6+2 = 33+11+7+5+4 = 33+9+8+7+2+1 = 33+9+8+6+4 = 33+9+8+5+4+1 = 33+9+7+6+5 = 33+9+7+6+4+1 = 33+9+7+5+4+2 = 33+9+6+5+4+2+1 = 33+8+7+6+5+1 = 33+8+7+6+4+2 = 33+8+7+5+4+2+1 = 22+11+9+8+7+3 = 22+11+9+8+6+4 = 22+11+9+7+6+5 = 22+11+9+6+5+4+3 = 22+11+8+7+5+4+3 = 22+9+8+7+6+5+3 = 22+9+8+7+6+4+3+1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Repdigit
- Eric Weisstein's World of Mathematics, Partition
Extensions
a(0)=1 prepended by Alois P. Heinz, Jan 18 2016
Comments