A109981 Primes such that both the sum of digits and the number of digits are primes.
11, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 113, 131, 137, 139, 151, 157, 173, 179, 191, 193, 197, 199, 223, 227, 229, 241, 263, 269, 281, 283, 311, 313, 317, 331, 337, 353, 359, 373, 379, 397, 401, 409, 421, 443, 449, 461, 463, 467, 487, 557, 571, 577, 593
Offset: 1
Examples
a(86) = 10037 because both the sum (=11) and number (=5) of digits are primes.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- G. Harman, Counting Primes whose Sum of Digits is Prime, J. Integer Seq., 15 (2012), Article 12.2.2.
Programs
-
Haskell
a109981 n = a109981_list !! (n-1) a109981_list = filter ((== 1) . a010051' . a055642) a046704_list -- Reinhard Zumkeller, Nov 16 2012
-
Mathematica
Select[Prime[Range[200]], PrimeQ[Length[IntegerDigits[ # ]]]&&PrimeQ[Plus@@IntegerDigits[ # ]]&]
Comments