A110036 Constant terms of the partial quotients of the continued fraction expansion of 1 + Sum_{n>=0} 1/x^(2^n), where each partial quotient has the form {x + a(n)} after the initial constant term of 1.
1, -1, 2, 0, 0, -2, 0, 2, 0, -2, 2, 0, -2, 0, 0, 2, 0, -2, 2, 0, 0, -2, 0, 2, -2, 0, 2, 0, -2, 0, 0, 2, 0, -2, 2, 0, 0, -2, 0, 2, 0, -2, 2, 0, -2, 0, 0, 2, -2, 0, 2, 0, 0, -2, 0, 2, -2, 0, 2, 0, -2, 0, 0, 2, 0, -2, 2, 0, 0, -2, 0, 2, 0, -2, 2, 0, -2, 0, 0, 2, 0, -2, 2, 0, 0, -2, 0, 2, -2, 0, 2, 0, -2, 0, 0, 2, -2, 0, 2, 0, 0, -2, 0, 2, 0, -2, 2, 0, -2, 0, 0, 2, -2, 0
Offset: 0
Examples
1 + 1/x + 1/x^2 + 1/x^4 + 1/x^8 + 1/x^16 + ... = [1; x - 1, x + 2, x, x, x - 2, x, x + 2, x, x - 2, ...].
Links
- Paul Barry, Conjectures and results on some generalized Rueppel sequences, arXiv:2107.00442 [math.CO], 2021.
Programs
-
PARI
contfrac(1+sum(n=0,10,1/x^(2^n)))
-
PARI
a(n)=polcoeff((1-x+3*x^2+x^3)/(1+x^2)- 2*sum(k=1,#binary(n),x^(3*2^(k-1))/prod(j=0,k,1+x^(2^j)+x*O(x^n))),n)
-
PARI
a(n)=subst(contfrac(1+sum(k=0,#binary(n+1),1/x^(2^k)))[n+1],x,0)
Formula
G.f. (1-x+3*x^2+x^3)/(1+x^2) - 2*Sum_{k>=1} x^(3*2^(k-1))/Product_{j=0..k} (1+x^(2^j)).
Comments