cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110037 Signed version of A090678 and congruent to A088567 mod 2.

Original entry on oeis.org

1, 1, -1, 0, 0, 1, 0, -1, 0, 1, -1, 0, 1, 0, 0, -1, 0, 1, -1, 0, 0, 1, 0, -1, 1, 0, -1, 0, 1, 0, 0, -1, 0, 1, -1, 0, 0, 1, 0, -1, 0, 1, -1, 0, 1, 0, 0, -1, 1, 0, -1, 0, 0, 1, 0, -1, 1, 0, -1, 0, 1, 0, 0, -1, 0, 1, -1, 0, 0, 1, 0, -1, 0, 1, -1, 0, 1, 0, 0, -1, 0, 1, -1, 0, 0, 1, 0, -1, 1, 0, -1, 0, 1, 0, 0, -1, 1, 0, -1, 0, 0, 1, 0, -1, 0
Offset: 0

Views

Author

Paul D. Hanna, Jul 09 2005

Keywords

Comments

a(n) = (-1)^[n/2]*A090678(n) = A088567(n) mod 2, where A088567(n) equals the number of "non-squashing" partitions of n. a(n) = -A110036(n)/2 for n>=2, where the A110036 gives the partial quotients of the continued fraction expansion of 1 + Sum_{n>=0} 1/x^(2^n).

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(A=1+x-x^2*(1+x)/(1+x^2)+ sum(k=1,#binary(n),x^(3*2^(k-1))/prod(j=0,k,1+x^(2^j)+x*O(x^n))),n)}

Formula

G.f.: A(x) = 1+x - x^2*(1+x)/(1+x^2) + Sum_{k>=1} x^(3*2^(k-1))/Product_{j=0..k} (1+x^(2^j)).
Conjecture: a(n) = A073089(n) - A073089(n+1) for n >= 2. - Alan Michael Gómez Calderón, Aug 19 2025