cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A305652 Expansion of Product_{k>=1} (1 + x^k)^(2^(k-1)-1).

Original entry on oeis.org

1, 0, 1, 3, 7, 18, 41, 99, 227, 538, 1236, 2872, 6597, 15166, 34669, 79150, 180011, 408616, 925015, 2089607, 4709937, 10595275, 23788174, 53312366, 119271967, 266399612, 594077742, 1322815256, 2941225084, 6530659320, 14481362803, 32070677496, 70937233268, 156721128440
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2018

Keywords

Comments

Weigh transform of A000225, shifted right one place.
Convolution of the sequences A081362 and A098407.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(2^(i-1)-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 07 2018
  • Mathematica
    nmax = 33; CoefficientList[Series[Product[(1 + x^k)^(2^(k-1)-1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 33; CoefficientList[Series[Exp[Sum[(-1)^(k + 1) x^(2 k)/(k (1 - x^k) (1 - 2 x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (2^(d - 1) - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 33}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000225(k-1).
G.f.: Product_{k>=1} (1 + x^k)^(A011782(k)-1).
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^(2*k)/(k*(1 - x^k)*(1 - 2*x^k))).
a(n) ~ 2^n * exp(sqrt(2*n) - 5/4 + c) / (sqrt(2*Pi) * 2^(3/4) * n^(3/4)), where c = Sum_{k>=2} -(-1)^k / (k*(2^k-1)*(2^k-2)) = -0.07640757130267274170429705262846... - Vaclav Kotesovec, Jun 08 2018
Showing 1-1 of 1 results.