A110111 Sequence associated to the recurrence b(n) = b(n-1) + 3*b(n-2).
0, 1, 7, 133, 1330, 18430, 210490, 2673223, 31940881, 394918819, 4788779380, 58709030380, 715296121540, 8745656280829, 106717441265323, 1303667366328817, 15915556720909510, 194371775990116810
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (7,84,-189,-729).
Programs
-
Mathematica
CoefficientList[Series[x/((1+3x-27x^2)(1-10x-27x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{7,84,-189,-729},{0,1,7,133},30] (* Harvey P. Dale, Jun 29 2022 *)
Formula
G.f.: x/((1 + 3*x - 27*x^2) * (1 - 10*x - 27*x^2)).
a(n) = 7*a(n-1) + 84*a(n-2) - 189*a(n-3) - 729*a(n-4) for n >= 4.
a(n) = b(n) * b(n+1) * b(n+2)/4, where b(n) = (((1 + sqrt(13))/2 )^n - ((1 - sqrt(13))/2)^n)/sqrt(13). [Corrected by Petros Hadjicostas, Dec 26 2019]
Comments