A110163 Exponents a(1), a(2), ... such that theta series of E_8 lattice, 1 + 240 q + 2160 q^2 + ... (A004009) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ...
-240, 26760, -4096240, 708938760, -130880766192, 25168873498760, -4978357936128240, 1005225129317834760, -206195878414962688240, 42824436296045618358408, -8983966738037593190400240, 1900416270294787067711818760, -404814256845771786255876096240, 86744167089111545378556727322760
Offset: 1
Keywords
Examples
From _Seiichi Manyama_, Jun 17 2017: (Start) a(1) = 8 + 1/3 * A008683(1/1) * A288261(1) = 8 + 1/3 * (-744) = -240, a(2) = 8 + 1/6 * (A008683(2/1) * A288261(1) + A008683(2/2) * A288261(2)) = 8 + 1/6 * (744 + 159768) = 26760. (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..424
Crossrefs
Programs
-
Mathematica
terms = 14; Clear[a, sol]; a4009[n_] := If[n == 0, 1, 240 DivisorSigma[3, n]]; sol[0] = {}; sol[kmax_] := sol[kmax] = Join[sol[kmax-1], SolveAlways[ Sum[ a4009[k] q^k, {k, 0, kmax}] == Normal[Product[(1-q^k)^a[k], {k, 1, kmax}] + O[q]^(kmax+1)] /. sol[kmax-1], q][[1]] ]; A110163 = Array[a, terms] /. sol[terms] (* Jean-François Alcover, Jul 03 2017 *)
Formula
a(n) = A013953(n^2) for n>=1. - Seiichi Manyama, Jun 17 2017
a(n) ~ (-1)^n * exp(Pi*sqrt(3)*n) / n. - Vaclav Kotesovec, Mar 08 2018
Comments