Original entry on oeis.org
6, 717, 398086, 135369240, 62518201350, 27027759382861, 12577742936206854, 5858597459401083456, 2795780972964509144838, 1345924404035022245534925, 655521004499800309096497414, 321708126100955273726273728024
Offset: 1
Original entry on oeis.org
-30, 3345, -512030, 88617345, -16360095774, 3146109187345, -622294742016030, 125653141164729345, -25774484801870336030, 5353054537005702294801, -1122995842254699148800030, 237552033786848383463977345, -50601782105721473281984512030
Offset: 1
A300147
a(n) = (1/8) * Sum_{d|n} d * A110163(d).
Original entry on oeis.org
-30, 6660, -1536120, 354476040, -81800478900, 18876653594640, -4356063194112240, 1005225129672310800, -231970363216834560390, 53530545369975222475800, -12352954264801690636800360, 2850624405442199478575792160
Offset: 1
A289633
a(n) = 6 * Sum_{d|n} d * A110163(d).
Original entry on oeis.org
-1440, 319680, -73733760, 17014849920, -3926422987200, 906079372542720, -209091033317387520, 48250806224270918400, -11134577434408058898720, 2569466177758810678838400, -592941804710481150566417280, 136829971461225574971638023680
Offset: 1
G.f.: -1440*q + 319680*q^2 - 73733760*q^3 + 17014849920*q^4 - 3926422987200*q^5 + ...
a(1) = 6 * (1 * A110163(1)) = -1440,
a(2) = 6 * (1 * A110163(1) + 2 * A110163(2)) = 319680,
a(3) = 6 * (1 * A110163(1) + 3 * A110163(3)) = -73733760.
A108091
Coefficients of series whose 8th power is the theta series of E_8 (see A004009).
Original entry on oeis.org
1, 30, -2880, 416640, -69178110, 12378401280, -2321610157440, 449733567736320, -89200812128140800, 18013245273252679710, -3689479088922151082880, 764375901202388789804160, -159862757100127037505991680, 33699694000689939789618455040, -7152050326608893289997995966720, 1526705794390267864554876727856640
Offset: 0
More precisely, the theta series of E_8 begins 1 + 240*q^2 + 2160*q^4 + 6720*q^6 + 17520*q^8 + ... and the 8th root of this is 1 + 30*q^2 - 2880*q^4 + 416640*q^6 - 69178110*q^8 + ...
- N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
- Seiichi Manyama, Table of n, a(n) for n = 0..424
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- N. J. A. Sloane, Seven Staggering Sequences.
-
nmax = 20; s = 8; CoefficientList[Series[(1 - 2*s/BernoulliB[s] * Sum[DivisorSigma[s - 1, k]*x^k, {k, 1, nmax}])^(1/16), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2017 *)
-
R. = PowerSeriesRing(ZZ,20)
a = R(eisenstein_series_qexp(4,20, normalization='integral'))
list(a.sqrt().sqrt().sqrt()) # Andy Huchala, Jul 10 2021
A288851
Exponents a(1), a(2), ... such that E_6, 1 - 504*q - 16632*q^2 - ... (A013973) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .
Original entry on oeis.org
504, 143388, 51180024, 20556578700, 8806299845112, 3929750661380124, 1803727445909594616, 845145871847732769804, 402283166289266872824312, 193877350835487271784566812, 94381548697864188120110027256, 46328820782943001597184984563596
Offset: 1
A192731
Euler transform is 1 / (q j(q)) where j is j-function (A000521).
Original entry on oeis.org
-744, 80256, -12288744, 2126816256, -392642298600, 75506620496256, -14935073808384744, 3015675387953504256, -618587635244888064744, 128473308888136855075200, -26951900214112779571200744
Offset: 1
From _Seiichi Manyama_, Jun 18 2017: (Start)
a(1) = (1/1) * A008683(1/1) * A288261(1) = (1/1) * (-744) = -744,
a(2) = (1/2) * (A008683(2/1) * A288261(1) + A008683(2/2) * A288261(2)) = (1/2) * (744 + 159768) = 80256. (End)
-
{a(n) = local(A, S); if( n<1, 0, A = 1 + x * O(x^n); S = x * ellj( x * A ); for( k = 1, n-1, S *= (A - x^k) ^ polcoeff( S, k)); - polcoeff( S, n))}
A288261
Coefficients in expansion of E_6/E_4.
Original entry on oeis.org
1, -744, 159768, -36866976, 8507424792, -1963211493744, 453039686271072, -104545516658693952, 24125403112135458840, -5567288717204029449672, 1284733088879405339418768, -296470902355240575283208928, 68414985730612787485819011168
Offset: 0
G.f.: 1 - 744*q + 159768*q^2 - 36866976*q^3 + 8507424792*q^4 - 1963211493744*q^5 + 453039686271072*q^6 + ...
From _Seiichi Manyama_, Jun 27 2017: (Start)
a(0) = j_0((-1+sqrt(3)*i)/2) = 1,_
a(1) = j_1((-1+sqrt(3)*i)/2) = -744 + 0^1 = -744,
a(2) = j_2((-1+sqrt(3)*i)/2) = 159768 - 1488*0^1 + 0^2 = 159768. (End)
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}])/(1 + 240*Sum[DivisorSigma[3, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 28 2017 *)
terms = 13; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[Ei[6]/Ei[4] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
a[ n_] := With[{j = Series[1728 KleinInvariantJ[ Log[ Series[q, {q, 0, n + 1}]]/(2 Pi I)], {q, 0, n}]}, SeriesCoefficient[ -q D[j, q] / j, {q, 0, n}]]; (* Michael Somos, Aug 15 2018 *)
A289292
Coefficients in expansion of E_4^(1/2).
Original entry on oeis.org
1, 120, -6120, 737760, -107249640, 17385063120, -3014720249760, 547287510713280, -102701836021530600, 19762301660609250840, -3878226140959368843120, 773209219953012480001440, -156173318001506652330786720, 31888935085481430265623676560
Offset: 0
-
terms = 14;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^(1/2) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
A289307
Coefficients in expansion of E_4^(1/4) in powers of q.
Original entry on oeis.org
1, 60, -4860, 660480, -105063420, 18206269560, -3328461434880, 631226199152640, -122944850563477500, 24436796345920143420, -4935178772322020730360, 1009598430837232126725120, -208736157503462405753487360, 43541664791244563211024015480
Offset: 0
From _Seiichi Manyama_, Jul 07 2017: (Start)
2F1(1/12, 5/12; 1; 1728/j)
= 1 + (1*5)/(1*1) * 12/j + (1*5*13*17)/(1*1*2*2) * (12/j)^2 + (1*5*13*17*25*29)/(1*1*2*2*3*3) * (12/j)^3 + ...
= 1 + 60/j + 39780/j^2 + 38454000/j^3 + ...
= 1 + 60*q - 44640*q^2 + 21399120*q^3 - ...
+ 39780*q^2 - 59192640*q^3 + ...
+ 38454000*q^3 - ...
+ ...
= 1 + 60*q - 4860*q^2 + 660480*q^3 - ... (End)
- Seiichi Manyama, Table of n, a(n) for n = 0..424
- M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22. Published in B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001, pp. 771-808, section 2.3. Example 3.
- R. S. Maier, Nonlinear differential equations satisfied by certain classical modular forms, arXiv:0807.1081 [math.NT], 2008-2010, p. 34 equation (7.29a).
-
a[ n_] := SeriesCoefficient[ ComposeSeries[ Series[ Hypergeometric2F1[ 1/12, 5/12, 1, q], {q, 0, n}], q^2 / Series[q^2 KleinInvariantJ[ Log[q]/(2 Pi I)], {q, 0, n}]], {q, 0, n}]; (* Michael Somos, Jun 21 2018 *)
Showing 1-10 of 22 results.
Comments