Original entry on oeis.org
6, 1440, 1194264, 541478400, 312591006756, 162166557492864, 88044200553447984, 46868779675750146048, 25162028756680583497806, 13459244040350535046357440, 7210731049497803400061471560, 3860497513211463446882383706112
Offset: 1
A289366
Coefficients in expansion of (E_6^2/E_4^3)^(1/288).
Original entry on oeis.org
1, -6, -702, -393804, -132734778, -61428055320, -26480146877172, -12318952616296752, -5730786812846192490, -2732960583228848850522, -1314627022075990658598360, -639871947654492158944455132, -313833506047227501170833823292
Offset: 0
(E_6^2/E_4^3)^(k/288): this sequence (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
nmax = 20; CoefficientList[Series[((1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^2 / (1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^3)^(1/288), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289365
Coefficients in expansion of (E_4^3/E_6^2)^(1/288).
Original entry on oeis.org
1, 6, 738, 402444, 138030342, 63625789080, 27583809566796, 12841110779519280, 5988752245273028886, 2859827345620916000346, 1377856546809576262931880, 671500179383482897207038108, 329754232921005442388958831684
Offset: 0
(E_4^3/E_6^2)^(k/288): this sequence (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
nmax = 20; CoefficientList[Series[((1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^3 / (1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^2)^(1/288), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289368
Coefficients in expansion of (E_6^2/E_4^3)^(1/24).
Original entry on oeis.org
1, -72, -6048, -4217184, -1264437504, -606533479920, -251777443450752, -117085712395216320, -53634689421870422016, -25408429618361083967592, -12110787335129301116994240, -5854620911089647830793873696
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9), this sequence (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
nmax = 20; CoefficientList[Series[((1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^2 / (1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^3)^(1/24), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289369
Coefficients in expansion of (E_4^3/E_6^2)^(1/24).
Original entry on oeis.org
1, 72, 11232, 5461344, 2029222656, 924074630640, 411487620614784, 192705317913673152, 91031590937141544960, 43814578627107100088424, 21291642032558036150652480, 10450287314646252538819378464, 5166676457072455262194208351232
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9), this sequence (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
nmax = 20; CoefficientList[Series[((1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^3 / (1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^2)^(1/24), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
Showing 1-5 of 5 results.
Comments