Original entry on oeis.org
984, 286752, 102360024, 41113157376, 17612599690200, 7859501322760224, 3607454891819189208, 1690291743695465539584, 804566332578533745648600, 387754701670974543569133600, 188763097395728376240220054488
Offset: 1
Related to E_{k+2}/E_k:
A288995 (k=2),
A192731 (k=4), this sequence (k=6).
Original entry on oeis.org
6, 717, 398086, 135369240, 62518201350, 27027759382861, 12577742936206854, 5858597459401083456, 2795780972964509144838, 1345924404035022245534925, 655521004499800309096497414, 321708126100955273726273728024
Offset: 1
Original entry on oeis.org
42, 11949, 4265002, 1713048225, 733858320426, 327479221781677, 150310620492466218, 70428822653977730817, 33523597190772239402026, 16156445902957272648713901, 7865129058155349010009168938, 3860735065245250133098748713633
Offset: 1
A299503
a(n) = (1/12) * Sum_{d|n} d * A288851(d).
Original entry on oeis.org
42, 23940, 12795048, 6852216840, 3669291602172, 1964875343509008, 1052174343447263568, 563430581238674063376, 301712374716950167413282, 161564459029576395778765080, 86516419639708839110100858360, 46328820782943003562067180265504
Offset: 1
A109817
G.f.: 12th root of Eisenstein series E_6 (cf. A013973).
Original entry on oeis.org
1, -42, -11088, -3774624, -1472710974, -617481728640, -270883381218912, -122585272771463040, -56747118995519331456, -26727350506044696990762, -12760853360973370821796320, -6159994719956314185540737376, -3000691311646502407278581263104, -1472883416501251994527873967792256
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..367
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
E_6^(k/12): this sequence (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; s = 6; CoefficientList[Series[(1 - 2*s/BernoulliB[s] * Sum[DivisorSigma[s - 1, k]*x^k, {k, 1, nmax}])^(1/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2017 *)
A110163
Exponents a(1), a(2), ... such that theta series of E_8 lattice, 1 + 240 q + 2160 q^2 + ... (A004009) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ...
Original entry on oeis.org
-240, 26760, -4096240, 708938760, -130880766192, 25168873498760, -4978357936128240, 1005225129317834760, -206195878414962688240, 42824436296045618358408, -8983966738037593190400240, 1900416270294787067711818760, -404814256845771786255876096240, 86744167089111545378556727322760
Offset: 1
From _Seiichi Manyama_, Jun 17 2017: (Start)
a(1) = 8 + 1/3 * A008683(1/1) * A288261(1) = 8 + 1/3 * (-744) = -240,
a(2) = 8 + 1/6 * (A008683(2/1) * A288261(1) + A008683(2/2) * A288261(2)) = 8 + 1/6 * (744 + 159768) = 26760. (End)
-
terms = 14; Clear[a, sol];
a4009[n_] := If[n == 0, 1, 240 DivisorSigma[3, n]];
sol[0] = {}; sol[kmax_] := sol[kmax] = Join[sol[kmax-1], SolveAlways[ Sum[ a4009[k] q^k, {k, 0, kmax}] == Normal[Product[(1-q^k)^a[k], {k, 1, kmax}] + O[q]^(kmax+1)] /. sol[kmax-1], q][[1]] ];
A110163 = Array[a, terms] /. sol[terms] (* Jean-François Alcover, Jul 03 2017 *)
A289293
Coefficients in expansion of E_6^(1/2).
Original entry on oeis.org
1, -252, -40068, -10158624, -3362961924, -1254502939032, -502480721822688, -211053631376919744, -91717692784641665028, -40892713821496126310364, -18600635229558474625901928, -8597703758971125751979122656
Offset: 0
-
terms = 12;
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E6[x]^(1/2) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
A289326
Coefficients in expansion of E_6^(1/4).
Original entry on oeis.org
1, -126, -27972, -8603784, -3156774138, -1265670056952, -536028623834760, -235629947944839168, -106414175763732002292, -49052892961209924090486, -22977990271885179647877768, -10904016663130642099838196120
Offset: 0
E_6^(k/12):
A109817 (k=1),
A289325 (k=2), this sequence (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289325
Coefficients in expansion of E_6^(1/6).
Original entry on oeis.org
1, -84, -20412, -6617856, -2505409788, -1027549673640, -442991672331264, -197605206331169280, -90359564898413083644, -42105781947560460595284, -19913609001700051596476280, -9531377528273693889501019392
Offset: 0
From _Seiichi Manyama_, Jul 08 2017: (Start)
2F1(1/12, 7/12; 1; 1728/(1728 - j))
= 1 - A289557(1)/(j - 1728) + A289557(2)/(j - 1728)^2 - A289557(3)/(j - 1728)^3 + ...
= 1 - 84/(j - 1728) + 62244/(j - 1728)^2 - 64318800/(j - 1728)^3 + ...
= 1 - 84*q - 82656*q^2 - 64795248*q^3 - ...
+ 62244*q^2 + 122496192*q^3 + ...
- 64318800*q^3 - ...
+ ...
= 1 - 84*q - 20412*q^2 - 6617856*q^3 - ... (End)
E_6^(k/12):
A109817 (k=1), this sequence (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(1/6), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289327
Coefficients in expansion of E_6^(1/3).
Original entry on oeis.org
1, -168, -33768, -9806496, -3482370024, -1364023149552, -567278132268960, -245678241438057792, -109559333350138970088, -49951945835561166375048, -23173552482577051154061168, -10901813191731667585777068000
Offset: 0
E_6^(k/12):
A109817 (k=1),
A289325 (k=2),
A289326 (k=3), this sequence (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(1/3), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
Showing 1-10 of 25 results.
Comments