A007242 McKay-Thompson series of class 2a for the Monster group.
1, -492, -22590, -367400, -3764865, -28951452, -182474434, -990473160, -4780921725, -20974230680, -84963769662, -321583404672, -1147744866180, -3890805976500, -12601590210180, -39183052547592, -117437602167291, -340431109329600, -957251463332600, -2617490612355240, -6975126788952456, -18149106017123576, -46187557595906250
Offset: 0
Keywords
Examples
T2a = 1/q - 492*q - 22590*q^3 - 367400*q^5 - 3764865*q^7 - ... 196884 - (-492) = 197376 = 256 * 771, 21493760 - 0 = 256 * 83960, ...
References
- T. Gannon, Moonshine Beyond the Monster, Cambridge, 2006; see p. 425.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..5000 (terms 0..500 from G. A. Edgar)
- J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
- D. Alexander, C. Cummins, J. McKay and C. Simons, Completely replicable functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
- J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Index entries for McKay-Thompson series for Monster simple group
Crossrefs
Programs
-
Mathematica
a[ n_] := If[ n < 1, Boole[n == 0], SeriesCoefficient[ Sqrt[ 1728 (KleinInvariantJ[ Log[x] /(Pi I)] - 1) + O[x]^(2 n)], {x, 0, 2 n - 1}]] (* Michael Somos, Jun 29 2011 *) nmax = 30; CoefficientList[Series[x^(1/2)*(-8*(2*EllipticTheta[2, 0, Sqrt[x]]^12 - 3*EllipticTheta[2, 0, Sqrt[x]]^8* EllipticTheta[3, 0, Sqrt[x]]^4 - 3*EllipticTheta[3, 0, Sqrt[x]]^8* EllipticTheta[2, 0, Sqrt[x]]^4 + 2*EllipticTheta[3, 0, Sqrt[x]]^12))/(EllipticTheta[3, 0, Sqrt[x]]^4*(EllipticTheta[2, 0, Sqrt[x]]^4 - EllipticTheta[3, 0, Sqrt[x]]^4)* EllipticTheta[2, 0, Sqrt[x]]^4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 11 2017, check of formula by G. A. Edgar *) eta[q_]:= q^(1/24)*QPochhammer[q]; nmax = 55; f1A := (eta[q]/eta[q^2] )^24*(1 +256*(eta[q^2]/eta[q])^24)^3; A007242:= CoefficientList[ Series[(q*f1A - 1728*q + O[q]^nmax)^(1/2), {q, 0, 50}], q]; Table[ A007242[[n]], {n, 1, 50}] (* G. C. Greubel, May 09 2018 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( sqrt( ellj( x^2 * (1 + x * O(x^(2*n)) ) ) - 1728), 2*n - 1))} /* Michael Somos, Jun 29 2011 */
-
PARI
{a(n) = if( n<0, 0, polcoeff( sum( k=1, n, -504 * sigma(k, 5) * x^k, 1 + x * O(x^n)) / eta(x + x * O(x^n))^12, n))} /* Michael Somos, Mar 17 2013 */
Formula
Sqrt(j-1728), where j is the j-function, see A000521.
A014708(2*n - 1) == a(n) (mod 256). That is, the coefficients of (T1A - T2a) are all divisible by 256. - Michael Somos, Jun 29 2011
Expansion of (-phi(-q)^12 - 30 * phi(-q)^8 * phi(q)^4 + 96 * phi(-q)^4 * phi(q)^8 - 64 * phi(q)^12) / f(-q)^12 where phi(), f() are Ramanujan theta functions. - Michael Somos, Mar 17 2013
Expansion of (-8*(2*theta_2(0, q)^12-3*theta_2(0, q)^8*theta_3(0, q)^4-3*theta_3(0, q)^8*theta_2(0, q)^4+2*theta_3(0, q)^12))/(theta_3(0, q)^4*(theta_2(0, q)^4-theta_3(0, q)^4)*theta_2(0, q)^4) in powers of q. Shows an analytic choice of the square root for complex q, 0 < |q| < 1. - G. A. Edgar, Mar 10 2017
G.f.: Product_{k>=1} (1-q^k)^(A289061(k)/2). - Seiichi Manyama, Jul 02 2017
a(n) ~ -exp(2*Pi*sqrt(2*n)) / (2^(3/4) * n^(3/4)). - Vaclav Kotesovec, Jul 09 2017
Comments