A289209
Coefficients in expansion of E_4^3/E_6^2.
Original entry on oeis.org
1, 1728, 1700352, 1332930816, 939690602496, 624182333927040, 399031077924476928, 248370528839869094400, 151578005556161702559744, 91116938989182168182098368, 54119528875319902426524072960, 31833210323194251819350736777984
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144), this sequence (k=288).
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^3 / (1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A106203
Coefficients of ((j(q)-1728)q)^(1/24) where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, -41, -11128, -3785793, -1476507895, -618962022329, -271503819749095, -122857395553223337, -56870247894888518054, -26784343611333662213130, -12787694574831980406719382, -6172809198874485994313412898
Offset: 0
(q*(j(q)-1728))^(k/24):
A289563 (k=-96),
A289562 (k=-72),
A289561 (k=-48),
A289417 (k=-24),
A289416 (k=-1), this sequence (k=1),
A289330 (k=2),
A289331 (k=3),
A289332 (k=4),
A289333 (k=5),
A289334 (k=6),
A007242 (k=12),
A289063 (k=24).
-
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(1/24), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
-
{a(n)=if(n<0,0, polcoeff( ((ellj(x+x^2*O(x^n))-1728)*x)^(1/24),n))}
A288840
Coefficients in expansion of E_8/E_6.
Original entry on oeis.org
1, 984, 574488, 307081056, 164453203992, 88062998451984, 47157008244215904, 25252184242734325440, 13522333949728177520664, 7241096993206804017918456, 3877547016709833498690361488, 2076394071353012138642420600352
Offset: 0
G.f.: 1 + 984*q + 574488*q^2 + 307081056*q^3 + 164453203992*q^4 + 88062998451984*q^5 + 47157008244215904*q^6 + ...
From _Seiichi Manyama_, Jun 27 2017: (Start)
a(0) = j_0(i) = 1,_
a(1) = j_1(i) = -744 + 1728^1 = 984,
a(2) = j_2(i) = 159768 - 1488*1728^1 + 1728^2 = 574488. (End)
- Ken Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, CBMS Regional Conference Series in Mathematics, vol. 102, American Mathematical Society, Providence, RI, 2004.
-
nmax = 20; CoefficientList[Series[(1 + 480*Sum[DivisorSigma[7, k]*x^k, {k, 1, nmax}])/(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 28 2017 *)
terms = 12; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[Ei[8]/Ei[6] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
A289325
Coefficients in expansion of E_6^(1/6).
Original entry on oeis.org
1, -84, -20412, -6617856, -2505409788, -1027549673640, -442991672331264, -197605206331169280, -90359564898413083644, -42105781947560460595284, -19913609001700051596476280, -9531377528273693889501019392
Offset: 0
From _Seiichi Manyama_, Jul 08 2017: (Start)
2F1(1/12, 7/12; 1; 1728/(1728 - j))
= 1 - A289557(1)/(j - 1728) + A289557(2)/(j - 1728)^2 - A289557(3)/(j - 1728)^3 + ...
= 1 - 84/(j - 1728) + 62244/(j - 1728)^2 - 64318800/(j - 1728)^3 + ...
= 1 - 84*q - 82656*q^2 - 64795248*q^3 - ...
+ 62244*q^2 + 122496192*q^3 + ...
- 64318800*q^3 - ...
+ ...
= 1 - 84*q - 20412*q^2 - 6617856*q^3 - ... (End)
E_6^(k/12):
A109817 (k=1), this sequence (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(1/6), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289416
Coefficients of (q*(j(q)-1728))^(-1/24) where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, 41, 12809, 4767210, 1969719570, 861799083811, 391094324350380, 182038077972154741, 86322373755372340110, 41521193849940130872000, 20197774625594843441436930, 9915082544034345319047507780
Offset: 0
(q*(j(q)-1728))^(k/24):
A289563 (k=-96),
A289562 (k=-72),
A289561 (k=-48),
A289417 (k=-24), this sequence (k=-1),
A106203 (k=1),
A289330 (k=2),
A289331 (k=3),
A289332 (k=4),
A289333 (k=5),
A289334 (k=6),
A007242 (k=12),
A289063 (k=24).
-
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(-1/24), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
A289561
Coefficients of 1/(q*(j(q)-1728))^2 where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, 1968, 2511000, 2605664960, 2387651205420, 2011663789279200, 1594903822090229312, 1207416525204065938560, 881461062200198781904590, 624887481909094711741279120, 432393768184906363401468637728, 293171504960988659691658645670592
Offset: 0
(q*(j(q)-1728))^(k/24):
A289563 (k=-96),
A289562 (k=-72), this sequence (k=-48),
A289417 (k=-24),
A289416 (k=-1),
A106203 (k=1),
A289330 (k=2),
A289331 (k=3),
A289332 (k=4),
A289333 (k=5),
A289334 (k=6),
A007242 (k=12),
A289063 (k=24).
-
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(-2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
A289562
Coefficients of 1/(q*(j(q)-1728))^3 where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, 2952, 5218884, 7138351488, 8319960432666, 8678332561127616, 8338315178481134040, 7518590274496806176256, 6444205834302869333758299, 5298802621872639665867604832, 4208666443076672300677008045636, 3246069554930472099322915758511872
Offset: 0
(q*(j(q)-1728))^(k/24):
A289563 (k=-96), this sequence (k=-72),
A289561 (k=-48),
A289417 (k=-24),
A289416 (k=-1),
A106203 (k=1),
A289330 (k=2),
A289331 (k=3),
A289332 (k=4),
A289333 (k=5),
A289334 (k=6),
A007242 (k=12),
A289063 (k=24).
-
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(-3), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
A289563
Coefficients of 1/(q*(j(q)-1728))^4 where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, 3936, 8895024, 15094625920, 21336320693400, 26506772152211520, 29887990556174431424, 31237788209244729015552, 30709242534935581933885740, 28700724444538653431660487520, 25706227251014342788669659769056, 22202613798662970539127791744222592
Offset: 0
(q*(j(q)-1728))^(k/24): this sequence (k=-96),
A289562 (k=-72),
A289561 (k=-48),
A289417 (k=-24),
A289416 (k=-1),
A106203 (k=1),
A289330 (k=2),
A289331 (k=3),
A289332 (k=4),
A289333 (k=5),
A289334 (k=6),
A007242 (k=12),
A289063 (k=24).
-
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(-4), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
A305699
Coefficients of 1/(q*(j(q)-744)) where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, 0, -196884, -21493760, 37899009486, 8443309031424, -6829893232051144, -2454385780209696768, 1130962845597176786661, 621972524796731658731520, -164194903359722124902384028, -144508453392903668301846454272
Offset: 0
-
CoefficientList[Series[1/((2^16 + x*QPochhammer[-1, x]^24)^3/(2*QPochhammer[-1, x])^24 - 744*x), {x, 0, 15}], x] (* Vaclav Kotesovec, Jun 09 2018 *)
Showing 1-9 of 9 results.