A289365
Coefficients in expansion of (E_4^3/E_6^2)^(1/288).
Original entry on oeis.org
1, 6, 738, 402444, 138030342, 63625789080, 27583809566796, 12841110779519280, 5988752245273028886, 2859827345620916000346, 1377856546809576262931880, 671500179383482897207038108, 329754232921005442388958831684
Offset: 0
(E_4^3/E_6^2)^(k/288): this sequence (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
nmax = 20; CoefficientList[Series[((1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^3 / (1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^2)^(1/288), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289210
Coefficients in expansion of E_6^2/E_4^3.
Original entry on oeis.org
1, -1728, 1285632, -616294656, 242544070656, -85253786824320, 27846073156184064, -8638345400999827968, 2579332695698905989120, -747814048389765750131136, 211795259563761765262894080, -58852853362216364363212075776
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144), this sequence (k=288).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^2 / (1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^3, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289369
Coefficients in expansion of (E_4^3/E_6^2)^(1/24).
Original entry on oeis.org
1, 72, 11232, 5461344, 2029222656, 924074630640, 411487620614784, 192705317913673152, 91031590937141544960, 43814578627107100088424, 21291642032558036150652480, 10450287314646252538819378464, 5166676457072455262194208351232
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9), this sequence (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
nmax = 20; CoefficientList[Series[((1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^3 / (1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^2)^(1/24), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A299694
Coefficients in expansion of (E_4^3/E_6^2)^(1/144).
Original entry on oeis.org
1, 12, 1512, 813744, 281434656, 129501949608, 56296822560480, 26218237904433888, 12242575532254540032, 5850239653863742634172, 2820869122426120317439152, 1375631026432164061822527120, 675950202173640832786529615232
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1), this sequence (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/144) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A299696
Coefficients in expansion of (E_4^3/E_6^2)^(1/96).
Original entry on oeis.org
1, 18, 2322, 1234116, 430292646, 197681749128, 86165040337452, 40145493017336976, 18768723217958523222, 8975036477140737601806, 4331009172188712335053032, 2113419430011730408087143924, 1039122180212218474089489166980
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2), this sequence (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/96) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A299697
Coefficients in expansion of (E_4^3/E_6^2)^(1/72).
Original entry on oeis.org
1, 24, 3168, 1663776, 584685312, 268219092816, 117214929608832, 54637244971358016, 25574598700199847936, 12238100148358426410360, 5910293921259795914011968, 2885917219371433467109558368, 1419817980186833008095972357120
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3), this sequence (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/72) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A299698
Coefficients in expansion of (E_4^3/E_6^2)^(1/48).
Original entry on oeis.org
1, 36, 4968, 2551824, 910405152, 416585268216, 182967944992992, 85373023607994528, 40055910812083687680, 19194979975339075406388, 9284600439037161721276848, 4539375955473797523355108272, 2236041702620444573315950439808
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4), this sequence (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/48) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A299943
Coefficients in expansion of (E_4^3/E_6^2)^(1/36).
Original entry on oeis.org
1, 48, 6912, 3479616, 1259268096, 575044765344, 253777092387840, 118545813515338368, 55748828845833043968, 26753648919849657887472, 12960874757914028815661568, 6344939709971525751086888640, 3129285552537639403735326646272
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6), this sequence (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/36) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299949
Coefficients in expansion of (E_4^3/E_6^2)^(1/32).
Original entry on oeis.org
1, 54, 7938, 3958956, 1442594502, 658201268952, 291148964582796, 136084851675471024, 64069809910723011222, 30769281599576554087722, 14917804015099613922436392, 7307669924831130556163175612, 3606311646826590340455185471940
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8), this sequence (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/32) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299950
Coefficients in expansion of (E_4^3/E_6^2)^(1/18).
Original entry on oeis.org
1, 96, 16128, 7622784, 2900355072, 1319081479488, 592274331915264, 278167185566287104, 131973896384325992448, 63712327450686749464032, 31055582715009234813891072, 15282363171869402875165461888, 7574187854327285047920802652160
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12), this sequence (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/18) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
Showing 1-10 of 19 results.
Comments