A289366
Coefficients in expansion of (E_6^2/E_4^3)^(1/288).
Original entry on oeis.org
1, -6, -702, -393804, -132734778, -61428055320, -26480146877172, -12318952616296752, -5730786812846192490, -2732960583228848850522, -1314627022075990658598360, -639871947654492158944455132, -313833506047227501170833823292
Offset: 0
(E_6^2/E_4^3)^(k/288): this sequence (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
nmax = 20; CoefficientList[Series[((1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^2 / (1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^3)^(1/288), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289209
Coefficients in expansion of E_4^3/E_6^2.
Original entry on oeis.org
1, 1728, 1700352, 1332930816, 939690602496, 624182333927040, 399031077924476928, 248370528839869094400, 151578005556161702559744, 91116938989182168182098368, 54119528875319902426524072960, 31833210323194251819350736777984
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144), this sequence (k=288).
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^3 / (1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A299413
Coefficients in expansion of (E_6^2/E_4^3)^(1/2).
Original entry on oeis.org
1, -864, 269568, -75240576, 19930724352, -5124295980864, 1292387210099712, -321604751662509312, 79241739168490536960, -19376923061550541800672, 4709786462808256974509568, -1139188440993923671697455488
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96), this sequence (k=144),
A289210 (k=288).
-
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}] + O[x]^terms;
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}] + O[x]^terms; (E6[x]^2/E4[x]^3)^(1/2) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 22 2018 *)
A289368
Coefficients in expansion of (E_6^2/E_4^3)^(1/24).
Original entry on oeis.org
1, -72, -6048, -4217184, -1264437504, -606533479920, -251777443450752, -117085712395216320, -53634689421870422016, -25408429618361083967592, -12110787335129301116994240, -5854620911089647830793873696
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9), this sequence (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
nmax = 20; CoefficientList[Series[((1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^2 / (1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^3)^(1/24), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A296609
Coefficients in expansion of (E_6^2/E_4^3)^(1/144).
Original entry on oeis.org
1, -12, -1368, -779184, -260251104, -120710392488, -51881715871776, -24129355507367136, -11210568318996090624, -5342692661136883228860, -2567906908021088206807248, -1249094126109188331384940944, -612254304549600491293149962880
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1), this sequence (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]^2/E4[x]^3)^(1/144) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A296614
Coefficients in expansion of (E_6^2/E_4^3)^(1/96).
Original entry on oeis.org
1, -18, -1998, -1156356, -382624794, -177898412808, -76229340502932, -35444571049682064, -16446161396159063082, -7832755937588033655054, -3761678744155185551186328, -1828621496185972561746774324, -895757692814150533920101726460
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2), this sequence (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]^2/E4[x]^3)^(1/96) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A296652
Coefficients in expansion of (E_6^2/E_4^3)^(1/72).
Original entry on oeis.org
1, -24, -2592, -1525536, -499930368, -233042911056, -99547207597440, -46277719207526208, -21444241881136232448, -10206632934331485363576, -4897739115250118143468992, -2379385980983995218900931680, -1164826509542958652906666171392
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3), this sequence (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]^2/E4[x]^3)^(1/72) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A297021
Coefficients in expansion of (E_6^2/E_4^3)^(1/48).
Original entry on oeis.org
1, -36, -3672, -2240784, -719628768, -337401534456, -143188210269216, -66549102831096480, -30753876262814297856, -14619380361359418716724, -7003704012123711964880592, -3398241529278572532519050928, -1661531038403129009358413705856
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4), this sequence (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]^2/E4[x]^3)^(1/48) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A299414
Coefficients in expansion of (E_6^2/E_4^3)^(1/3).
Original entry on oeis.org
1, -576, 96768, -30253824, 4526272512, -1917275819904, 105679295281152, -161582272076127744, -20815321809392861184, -20529723592970845750080, -6560883968194298456036352, -3617226648349298247150473472
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72), this sequence (k=96),
A299413 (k=144),
A289210 (k=288).
-
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}] + O[x]^terms;
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}] + O[x]^terms; (E6[x]^2/E4[x]^3)^(1/3) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 22 2018 *)
A299422
Coefficients in expansion of (E_6^2/E_4^3)^(1/36).
Original entry on oeis.org
1, -48, -4608, -2926656, -919916544, -434180785824, -182989456349184, -85043754451706496, -39190139442556010496, -18607302407649844554480, -8899353903793993480829952, -4312672556860403013966227136, -2105991149652021429396842987520
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6), this sequence (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]^2/E4[x]^3)^(1/36) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
Showing 1-10 of 19 results.
Comments