A110165 Riordan array (1/sqrt(1-6x+5x^2),(1-3x-sqrt(1-6x+5x^2))/(2x)).
1, 3, 1, 11, 6, 1, 45, 30, 9, 1, 195, 144, 58, 12, 1, 873, 685, 330, 95, 15, 1, 3989, 3258, 1770, 630, 141, 18, 1, 18483, 15533, 9198, 3801, 1071, 196, 21, 1, 86515, 74280, 46928, 21672, 7210, 1680, 260, 24, 1, 408105, 356283, 236736, 119154, 44982, 12510, 2484, 333, 27, 1
Offset: 0
Examples
Rows begin 1; 3, 1; 11, 6, 1; 45, 30, 9, 1; 195, 144, 58, 12, 1; 873, 685, 330, 95, 15, 1; Production array begins: 3, 1; 2, 3, 1; 0, 1, 3, 1; 0, 0, 1, 3, 1; 0, 0, 0, 1, 3, 1; 0, 0, 0, 0, 1, 3, 1; 0, 0, 0, 0, 0, 1, 3, 1; ... - _Philippe Deléham_, Feb 08 2014
Links
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
Programs
-
Maple
seq(seq( coeff((x^2 + 3*x + 1)^n, x, n-k), k = 0..n ), n = 0..10); # Peter Bala, Jan 09 2022
-
Mathematica
(* The function RiordanArray is defined in A256893. *) RiordanArray[1/Sqrt[1-6#+5#^2]&, (1-3#-Sqrt[1-6#+5#^2])/(2#)&, 10] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
Formula
Number triangle T(n, k) = Sum_{j = 0..n} C(n, j)C(2j, j+k).
T(n,0) = 3*T(n-1,0) + 2*T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k > 0, T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 24 2014
Comments