cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A110166 Row sums of Riordan array A110165.

Original entry on oeis.org

1, 4, 18, 85, 410, 1999, 9807, 48304, 238570, 1180615, 5851253, 29033074, 144190943, 716652070, 3564079250, 17734184365, 88280673770, 439625873215, 2189988826125, 10912480440850, 54389237971285, 271142650382080
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Comments

Number of 5-ary words of length n in which the number of 1's does not exceed the number of 0's. - David Scambler, Aug 14 2012
From Peter Bala, Jan 09 2022: (Start)
Conjectures: for k >= 2, the number of k-ary words of length n such that the number of 1's <= the number of 0's is equal to the coefficient of x^n in the expansion of ( k*x + 1/(1 + x) )^n, and satisfies the recurrence u(0) = 1, u(1) = k-1 and n*u(n) = (k-2)*(2*n-1)*u(n-1) - k*(k-4)*(n-1)* u(n-2) + k^(n-1) for n >= 2.
For cases see A027306 (k = 2), A027914 (k = 3) and A032443 (k = 4). (End)

Crossrefs

Programs

  • Maple
    seq( (1/2)*(5^n + add(binomial(n,k)*binomial(2*k,k), k = 0..n)), n = 0..30); # Peter Bala, Jan 08 2022
  • Mathematica
    Table[Sum[Sum[Binomial[n,j]Binomial[2j,j+k],{j,0,n}],{k,0,n}],{n,0,25}] (* Harvey P. Dale, Dec 16 2011 *)

Formula

G.f.: (1/sqrt(1-6*x+5*x^2))/(1-(1-3*x-sqrt(1-6*x+5*x^2))/(2*x)).
a(n) = Sum_{k = 0..n} Sum_{j = 0..n} C(n, j)*C(2*j, j+k).
Recurrence: n*a(n) = (11*n-8)*a(n-1) - 5*(7*n-10)*a(n-2) + 25*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 5^n/2*(1+sqrt(5)/(2*sqrt(Pi*n))). - Vaclav Kotesovec, Oct 18 2012
From Peter Bala, Jan 08 2022: (Start)
a(n) = (1/2)*(5^n + A026375(n)) = (1/2)*(5^n + Sum_{k = 0..n} binomial(n,k) *binomial(2*k,k)).
a(n) = (1/2)*(5^n)*(1 + Sum_{k = 0..n} binomial(n,k)*binomial(2*k,k)*(-1/5)^k).
a(n) = [x^n] ( 5*x + 1/(1 + x) )^n.
a(0) = 1, a(1) = 4 and n*a(n) = 3*(2*n-1)*a(n-1) - 5*(n-1)*a(n-2) + 5^(n-1) for n >= 2.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k.
Binomial transform of A032443. (End)

A110167 Diagonal sums of Riordan array A110165.

Original entry on oeis.org

1, 3, 12, 51, 226, 1026, 4733, 22083, 103914, 492228, 2344035, 11211210, 53817063, 259135299, 1251074772, 6053946531, 29354128498, 142584834924, 693691007267, 3379680991356, 16486985580693, 80521218046569, 393674826425462
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Programs

  • Mathematica
    Table[Sum[Sum[Binomial[n-k,j]*Binomial[2j,j+k],{j,0,n-k}],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2012 *)

Formula

G.f.: 2/sqrt(1-6*x+5*x^2)/(1+3*x+sqrt(1-6*x+5*x^2)).
a(n) = sum{k=0..floor(n/2), sum{j=0..n-k, C(n-k, j)*C(2*j, j+k)}}.
Recurrence: 3*(n+1)*(16*n-7)*a(n) = (272*n^2 + 9*n - 119)*a(n-1) - 3*(48*n^2 - 37*n - 31)*a(n-2) - 5*(n-1)*(16*n+9)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 5^(n+3/2)/(8*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 18 2012

A026375 a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k).

Original entry on oeis.org

1, 3, 11, 45, 195, 873, 3989, 18483, 86515, 408105, 1936881, 9238023, 44241261, 212601015, 1024642875, 4950790605, 23973456915, 116312293305, 565280386625, 2751474553575, 13411044301945, 65448142561035, 319756851757695
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=0; also a(n)=T(2n,n).
Partial sums of A085362. Number of bilateral Schroeder paths (i.e., lattice paths consisting of steps U=(1,1), D=(1,-1) and H=(2,0)) from (0,0) to (2n,0) and with no H-steps at odd (positive or negative) levels. Example: a(2)=11 because we have HUD, UDH, UDUD, UUDD, UDDU, their reflections in the x-axis and HH. - Emeric Deutsch, Jan 30 2004
Largest coefficient of (1+3*x+x^2)^n; row sums of triangle in A124733. - Philippe Deléham, Oct 02 2007
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps come in three colors. - N-E. Fahssi, Feb 05 2008
Equals INVERT transform of A109033: (1, 2, 6, 22, 88, ...), INVERTi transform of A111966, binomial transform of A000984, and inverse Binomial transform of A081671. Convolved with A002212: (1, 3, 10, 36, ...) = A026376: (1, 6, 30, 144, ...). Equals convolution square root of A003463: (1, 6, 31, 156, 781, 3906, ...). - Gary W. Adamson, May 17 2009
Diagonal of array with rational generating function 1/(1 - (x^2 + 3*x*y + y^2)). - Gheorghe Coserea, Jul 29 2018
a(n) == 0 (mod 3) if and only if n is in A081606. - Fabio Visonà, Aug 03 2023

Examples

			G.f. = 1 + 3*x + 11*x^2 + 45*x^3 + 195*x^4 + 873*x^5 + 3989*x^6 + ...
		

Crossrefs

Column 3 of A292627. Column 1 of A110165. Central column of A272866.
First differences are in A085362. Bisection of A026380.
m-th binomial transforms of A000984: A126869 (m = -2), A002426 (m = -1 and m = -3 for signed version), A000984 (m = 0 and m = -4 for signed version), A026375 (m = 1 and m = -5 for signed version), A081671 (m = 2 and m = -6 for signed version), A098409 (m = 3 and m = -7 for signed version), A098410 (m = 4 and m = -8 for signed version), A104454 (m = 5 and m = -9 for signed version).

Programs

  • GAP
    List([0..25],n->Sum([0..n],k->Binomial(n,k)*Binomial(2*k,k))); # Muniru A Asiru, Jul 29 2018
  • Haskell
    a026375 n = a026374 (2 * n) n  -- Reinhard Zumkeller, Feb 22 2014
    
  • Maple
    seq( add(binomial(n,k)*binomial(2*k,k), k=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
    a := n -> simplify(GegenbauerC(n, -n, -3/2)):
    seq(a(n), n=0..22); # Peter Luschny, May 09 2016
  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-6*x+5*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
    (* From Michael Somos, May 11 2014: (Start) *)
    a[ n_] := Sum[ Binomial[n, k] Binomial[2 k, k], {k, 0, n}];
    a[ n_] := If[ n < 0, 0, Hypergeometric2F1[-n, 1/2, 1, -4]];
    a[ n_] := If[ n < 0, 0, Coefficient[(1 + 3 x + x^2)^n, x, n]];
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[Exp[3 x] BesselI[0,2 x], {x, 0, n}]];
    (* (End) *)
  • Maxima
    A026375(n):=coeff(expand((1+3*x+x^2)^n),x,n);
    makelist(A026375(n),n,0,12); /* Emanuele Munarini, Mar 02 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + 3*x + x^2)^n, n))}; /* Michael Somos, Sep 09 2002 */
    
  • PARI
    a(n)={my(v=Vec((1-x-x^2)^n)); sum(k=1,#v, v[k]^2);} \\ Joerg Arndt, Jul 06 2011
    
  • PARI
    {a(n) = sum(k=0, n, 5^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
    
  • PARI
    {a(n) = sum(k=0, n\2, 3^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019
    

Formula

Representation by Gauss's hypergeometric function, in Maple notation: a(n)=hypergeom([ -n, 1/2 ], [ 1 ], -4). - Karol A. Penson, Apr 20 2001
This sequence is the binomial transform of A000984. - John W. Layman, Aug 11 2000; proved by Emeric Deutsch, Oct 26 2002
E.g.f.: exp(3*x)*I_0(2x), where I_0 is Bessel function. - Michael Somos, Sep 17 2002
G.f.: 1/sqrt(1-6*x+5*x^2). - Emeric Deutsch, Oct 26 2002
D-finite with recurrence: n*a(n)-3*(2*n-1)*a(n-1)+5*(n-1)*a(n-2)=0 for n > 1. - Emeric Deutsch, Jan 24 2004
From Emeric Deutsch, Jan 30 2004: (Start)
a(n) = [t^n](1+3*t+t^2)^n;
a(n) = Sum_{j=ceiling(n/2)..n} 3^(2*j-n)*binomial(n, j)*binomial(j, n-j). (End)
a(n) = A026380(2*n-1) (n>0). - Emeric Deutsch, Feb 18 2004
G.f.: 1/(1-x-2*x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x... (continued fraction). - Paul Barry, Jan 06 2009
a(n) = sum of squared coefficients of (1+x-x^2)^n - see triangle A084610. - Paul D. Hanna, Jul 18 2009
a(n) = sum of squares of coefficients of (1-x-x^2)^n. - Joerg Arndt, Jul 06 2011
a(n) = (1/Pi)*Integral_{x=-2..2} ((3+x)^n/sqrt((2-x)*(2+x))) dx. - Peter Luschny, Sep 12 2011
a(n) ~ 5^(n+1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012
G.f.: G(0)/(1-x), where G(k) = 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
0 = a(n)*(+25*a(n+1) - 45*a(n+2) + 10*a(n+3)) + a(n+1)*(-15*a(n+1) + 36*a(n+2) - 9*a(n+3)) + a(n+2)*(-3*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, May 11 2014
a(n) = GegenbauerC(n, -n, -3/2). - Peter Luschny, May 09 2016
a(n) = Sum_{k=0..n} 5^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - Seiichi Manyama, Apr 22 2019
a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
a(n) = (1/Pi) * Integral_{x = -1..1} (1 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (5 - 4*x^2)^n/sqrt(1 - x^2) dx. - Peter Bala, Jan 27 2020
From Peter Bala, Jan 10 2022: (Start)
1 + x*exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 3*x^2 + 10*x^3 + 36*x^4 + ... is the o.g.f. of A002212.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

Extensions

Definition simplified by N. J. A. Sloane, Feb 16 2012

A110168 Riordan array ((1-x^2)/(1+3x+x^2),x/(1+3x+x^2)).

Original entry on oeis.org

1, -3, 1, 7, -6, 1, -18, 24, -9, 1, 47, -84, 50, -12, 1, -123, 275, -225, 85, -15, 1, 322, -864, 900, -468, 129, -18, 1, -843, 2639, -3339, 2219, -840, 182, -21, 1, 2207, -7896, 11756, -9528, 4610, -1368, 244, -24, 1, -5778, 23256, -39825, 38121, -22518, 8532, -2079, 315, -27, 1, 15127, -67650, 130975
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Comments

Inverse of A110165. Row sums are 1,-2,2,-2,... with g.f. (1-x)/(1+x). Diagonal sums are (-1)^n*A080923. Product of A110162 and inverse binomial transform (1/(1+x),x/(1+x)).

Examples

			Rows begin
1;
-3,1;
7,-6,1;
-18,24,-9,1;
47,-84,50,-12,1;
-123,275,-225,85,-15,1;
		

Formula

T(n,k) = T(n-1,k-1) - 3*T(n-1,k) - T(n-2,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = -3, T(2,0) = 7, T(2,1) = -6, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 22 2014

A272866 Triangle read by rows, T(n,k) = GegenbauerC(m,-n,-3/2) where m = k if k=0 and 0<=k<=2n.

Original entry on oeis.org

1, 1, 3, 1, 1, 6, 11, 6, 1, 1, 9, 30, 45, 30, 9, 1, 1, 12, 58, 144, 195, 144, 58, 12, 1, 1, 15, 95, 330, 685, 873, 685, 330, 95, 15, 1, 1, 18, 141, 630, 1770, 3258, 3989, 3258, 1770, 630, 141, 18, 1, 1, 21, 196, 1071, 3801, 9198, 15533, 18483, 15533, 9198, 3801, 1071, 196, 21, 1
Offset: 0

Views

Author

Peter Luschny, May 08 2016

Keywords

Comments

From R. J. Mathar, Nov 05 2021: (Start)
These are the antidiagonals of the following array with the bivariate generating function 1/(1-x^2-3*x*y-y^2):
1 0 1 0 1 0 1 0 1 0 1 ...
0 3 0 6 0 9 0 12 0 15 0 ...
1 0 11 0 30 0 58 0 95 0 141 ...
0 6 0 45 0 144 0 330 0 630 0 ...
1 0 30 0 195 0 685 0 1770 0 3801 ...
0 9 0 144 0 873 0 3258 0 9198 0 ...
1 0 58 0 685 0 3989 0 15533 0 46928 ...
0 12 0 330 0 3258 0 18483 0 74280 0 ...
1 0 95 0 1770 0 15533 0 86515 0 356283 ...
0 15 0 630 0 9198 0 74280 0 408105 0 ...
1 0 141 0 3801 0 46928 0 356283 0 1936881 ... (End)

Examples

			                                1;
                            1,  3, 1;
                         1, 6, 11, 6, 1;
                     1, 9, 30, 45, 30, 9, 1;
              1, 12, 58, 144, 195, 144, 58, 12, 1;
         1, 15, 95, 330, 685, 873, 685, 330, 95, 15, 1;
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> simplify(GegenbauerC(`if`(k
    				
  • Mathematica
    Table[If[n == 0, 1, GegenbauerC[If[k < n, k, 2 n - k], -n, -3/2]], {n, 0, 7}, {k, 0, 2 n}] // Flatten (* Michael De Vlieger, Aug 02 2019 *)

Formula

T(n,n) = A026375(n) for n>=0.
T(n,n-1) = A026376(n) for n>=1.
T(n,n+1)/n = A002212(n) for n>=1.

A236420 Riordan array (1/(1-3*x), (1-3*x-sqrt(1-6*x+5*x^2))/(2*x)).

Original entry on oeis.org

1, 3, 1, 9, 6, 1, 27, 28, 9, 1, 81, 120, 56, 12, 1, 243, 497, 300, 93, 15, 1, 729, 2034, 1490, 594, 139, 18, 1, 2187, 8321, 7098, 3411, 1029, 194, 21, 1, 6561, 34248, 33026, 18360, 6692, 1632, 258, 24, 1, 19683, 142331, 151686, 94798, 40068, 11846, 2430, 331, 27, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 25 2014

Keywords

Comments

T(n,0) = 3^n = A000244(n).
T(n,2) = A002212(n+1) - 3^n.
T(n+1,n) = 3n+3 = A008585(n+1).
T(n+2,n) = (9*n^2+29*n+18)/2.

Examples

			Triangle begins:
1;
3, 1;
9, 6, 1;
27, 28, 9, 1;
81, 120, 56, 12, 1;
243, 497, 300, 93, 15, 1;
729, 2034, 1490, 594, 139, 18, 1
		

Crossrefs

Cf. Similar sequences: A091965, A110165

Formula

T(n,0) = 3*T(n-1,0), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k>0, T(n,k) = 0 if k<0 or if k>n, T(0,0) = 1.
Showing 1-6 of 6 results.