A110171 Triangle read by rows: T(n,k) (0 <= k <= n) is the number of Delannoy paths of length n that start with exactly k (0,1) steps (or, equivalently, with exactly k (1,0) steps).
1, 2, 1, 8, 4, 1, 38, 18, 6, 1, 192, 88, 32, 8, 1, 1002, 450, 170, 50, 10, 1, 5336, 2364, 912, 292, 72, 12, 1, 28814, 12642, 4942, 1666, 462, 98, 14, 1, 157184, 68464, 27008, 9424, 2816, 688, 128, 16, 1, 864146, 374274, 148626, 53154, 16722, 4482, 978, 162, 18, 1
Offset: 0
Examples
T(2,1)=4 because we have NED, NENE, NEEN and NDE. Triangle starts: 1; 2, 1; 8, 4, 1; 38, 18, 6, 1; 192, 88, 32, 8, 1; From _Paul Barry_, May 07 2009: (Start) Production matrix is 2, 1, 4, 2, 1, 6, 2, 2, 1, 8, 2, 2, 2, 1, 10, 2, 2, 2, 2, 1, 12, 2, 2, 2, 2, 2, 1, 14, 2, 2, 2, 2, 2, 2, 1, 16, 2, 2, 2, 2, 2, 2, 2, 1, 18, 2, 2, 2, 2, 2, 2, 2, 2, 1 (End)
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
- Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
- W.-j. Woan, The Lagrange Inversion Formula and Divisibility Properties, JIS 10 (2007) 07.7.8, example 5.
Programs
-
Maple
Q:=sqrt(1-6*z+z^2): G:=(1+z+Q)/Q/(2-t+t*z+t*Q): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
-
Mathematica
T[n_, n_] = 1; T[n_, k_] := Sum[Binomial[n, i] Binomial[2n-k-i-1, n-k-i], {i, 0, n}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 13 2019 *)
-
Sage
A110171 = lambda n,k : binomial(n, k)*hypergeometric([k-n, n], [k+1], -1) for n in (0..9): [round(A110171(n,k).n(100)) for k in (0..n)] # Peter Luschny, Sep 17 2014
Formula
T(n,0) = A002003(n) for n >= 1.
T(n,1) = A050146(n) for n >= 1.
Row sums are the central Delannoy numbers (A001850).
G.f.: (1+z+Q)/(Q(2-t+tz+tQ)), where Q=sqrt(1-6z+z^2).
T(n,k) = x^(n-k)*((1+x)/(1-x))^n. - Paul Barry, May 07 2009
T(n,k) = C(n, k)*hypergeometric([k-n, n], [k+1], -1). - Peter Luschny, Sep 17 2014
From Peter Bala, Jun 29 2015: (Start)
T(n,k) = Sum_{i = 0..n} binomial(n,i)*binomial(2*n-k-i-1,n-k-i).
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = ( 1 - x - sqrt(1 - 6*x + x^2) )/2 and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan). (End)
T(n,k) = P(n-k, k, -1, 3), where P(n, alpha, beta, x) is the n-th Jacobi polynomial with parameters alpha and beta. Cf. A113139. - Peter Bala, Feb 16 2020
Comments