cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A113139 Number triangle, equal to half of Delannoy square array A008288.

Original entry on oeis.org

1, 3, 1, 13, 5, 1, 63, 25, 7, 1, 321, 129, 41, 9, 1, 1683, 681, 231, 61, 11, 1, 8989, 3653, 1289, 377, 85, 13, 1, 48639, 19825, 7183, 2241, 575, 113, 15, 1, 265729, 108545, 40081, 13073, 3649, 833, 145, 17, 1, 1462563, 598417, 224143, 75517, 22363, 5641
Offset: 0

Views

Author

Paul Barry, Oct 15 2005

Keywords

Comments

Row sums are A047781(n+1). Diagonal sums are A113140. Inverse is A113141.

Examples

			Triangle begins
     1;
     3,    1;
    13,    5,    1;
    63,   25,    7,   1;
   321,  129,   41,   9,  1;
  1683,  681,  231,  61, 11,  1;
  8989, 3653, 1289, 377, 85, 13, 1;
  ...
A113139 as a square array = A110171 * A008288:
  / 1   1   1   1 ... \   / 1         \ / 1 1  1  1 ...\
  | 3   5   7   9 ... |   | 2  1       || 1 3  5  7 ...|
  |13  25  41  61 ... | = | 8  4 1     || 1 5 13 25 ...|
  |63 129 231 377 ... |   |38 18 6 1   || 1 7 25 63 .. |
  |...                |   |...         || 1...         |
- _Peter Bala_, Dec 09 2015
		

Crossrefs

A001850 (column 0), A002002 (column 1), A026002 (column 2), A190666 (column 3), A047781 (row sums), A113140 (diagonal sums), A113141 (matrix inverse). Cf. A006318, A008288, A110171.

Programs

  • Maple
    T := (n,k) -> (-1)^(n-k)*hypergeom([n+1, -n+k], [1], 2):
    seq(seq(simplify(T(n,k)),k=0..n),n=0..8); # Peter Luschny, Mar 02 2017
  • Mathematica
    Table[Sum[Binomial[n - k, j] Binomial[n + j, k + j], {j, 0, n}], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 09 2015 *)

Formula

T(n, k) = Sum_{j=0..n} C(n-k, j)*C(n+j, k+j).
T(n, k) = Sum_{j=0..n} C(n, j)*C(n-k, j-k)*2^(n-j).
From Peter Bala, Dec 09 2015: (Start)
T(n,k) = A008288(n - k, n).
O.g.f.: 2/( sqrt(x^2 - 6*x + 1)*(t*sqrt(x^2 - 6*x + 1) + t*x - t + 2) ) = 1 + (3 + t)*x + (13 + 5*t + t^2)*x^2 + ....
Riordan array (f(x), x*g(x)), where f(x) = 1/sqrt(1 - 6*x + x^2) is the o.g.f. for the central Delannoy numbers, A001850, and g(x) = 1/x* revert( x*(1 - x)/(1 + x) ) = 1 + 2*x + 6*x^2 + 22*x^3 + 90*x^4 + 394*x^5 + ... is the o.g.f. for the large Schroder numbers, A006318.
Read as a square array, this is the generalized Riordan array (f(x), g(x)) in the sense of the Bala link, which factorizes as (1 + x*g'(x)/g(x), x*g(x)) * (1/(1 - x), (1 + x)/(1 - x)) = A110171 * A008288. See the example below. (End)
T(n,k) = (-1)^(n-k)*hypergeom([n+1, -n+k], [1], 2). - Peter Luschny, Mar 02 2017
From Peter Bala, Feb 16 2020: (Start)
T(n,k) = P(n-k, k, 0, 3), where P(n, alpha, beta, x) is the n-th Jacobi polynomial with parameters alpha and beta.
T(n,k) = binomial(n,k) * hypergeom( [n + 1, k - n], [k + 1], -1 ).
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 + x)^n/(1 - x)^(n+1) about 0. For example, for n = 4, (1 + x)^4/(1 - x)^5 = 1 + 9*x + 41*x^2 + 129*x^3 + 321*x^4 + O(x^5). Cf. A110171. (End)

A118384 Gaussian column reduction of Hankel matrix for central Delannoy numbers.

Original entry on oeis.org

1, 3, 1, 13, 6, 1, 63, 33, 9, 1, 321, 180, 62, 12, 1, 1683, 985, 390, 100, 15, 1, 8989, 5418, 2355, 720, 147, 18, 1, 48639, 29953, 13923, 4809, 1197, 203, 21, 1, 265729, 166344, 81340, 30744, 8806, 1848, 268, 24, 1, 1462563, 927441, 471852, 191184, 60858
Offset: 0

Views

Author

Paul Barry, Apr 26 2006

Keywords

Comments

First column is central Delannoy numbers A001850. Second column is A050151.

Examples

			Triangle begins:
     1,
     3,     1,
    13,     6,     1,
    63,    33,     9,     1,
   321,   180,    62,    12,    1,
  1683,   985,   390,   100,   15,   1
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,i]Binomial[n,n-k-i]2^i,{i,0,n-k}],{n,0,8},{k,0,8}]//MatrixForm
  • Maxima
    create_list(sum(binomial(n,i)*binomial(n,n-k-i)*2^i,i,0,n),n,0,8,k,0,n);

Formula

Number triangle T(n,k) = Sum_{j=0..n} C(n,j)*C(j,n-k-j)*2^(n-k-j)*3^(2*j-(n-k));
Riordan array (1/sqrt(1-6*x+x^2), (1-3*x-sqrt(1-6*x+x^2))/(4*x));
Column k has e.g.f. exp(3*x)*Bessel_I(k,2*sqrt(2)x)/(sqrt(2))^k.
a(n,k) = Sum_{i = 0..n} binomial(n,i)*binomial(n,n-k-i)*2^i, also a(n+1,k+1) = a(n,k) + 3*a(n,k+1) + 2*a(n,k+2). - Emanuele Munarini, Mar 16 2011
From Peter Bala, Jun 29 2015: (Start)
Matrix product A110171 * A007318.
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = ( 1 - 3*x - sqrt(1 - 6*x + x^2) )/(4*x) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan, Jan 2000, Example 5.2).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = 1 + 3*x + 2*x^2. In general the (n,k)-th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)
Showing 1-2 of 2 results.