A190726
Central coefficients of Riordan matrix A118384.
Original entry on oeis.org
1, 6, 62, 720, 8806, 110916, 1423796, 18520788, 243289670, 3220011684, 42872967012, 573608356272, 7705343534716, 103857425975400, 1403902871946000, 19024773303675420, 258372666772083270, 3515644245559211172, 47918193512409831380
Offset: 0
From _Bradley Klee_, Jul 16 2018: (Start)
I_2 = Integral_{t=0..1} ((1-t)^4*t^4)/(4*(1+t)^3)*dt = 62*log(2) - 1719/40 < 10^(-3).
I_3 = Integral_{t=0..1} - ((1-t)^6*t^6)/(8*(1+t)^4)*dt = 720*log(2) - 143731/288 < 10^(-5). (End)
-
Table[Sum[Binomial[2n,k]Binomial[2n,n-k]2^k,{k,0,n}],{n,0,100}]
RecurrenceTable[{2*(n-1)*(2*n-3)*(2*n-1)*(33*n-8)*a[n-2]+ 9*(2*n-1)*(693*n^3-1554*n^2+989*n-160)*a[n-1] -3*n*(3*n-2)*(3*n-1)*(33*n-41)*a[n]==0, a[0]==1,a[1]==6},a,{n,0,10}] (* Bradley Klee, Jun 29 2018 *)
-
makelist(sum(binomial(2*n,k)*binomial(2*n,n-k)*2^k,k,0,n),n,0,12);
-
a(n)=sum(k=0,n,binomial(2*n,k)*binomial(2*n,n-k)<Charles R Greathouse IV, Jun 29 2011
A190724
Row sums of Riordan matrix A118384.
Original entry on oeis.org
1, 4, 20, 106, 576, 3174, 17648, 98746, 555104, 3131854, 17720880, 100507554, 571179792, 3251459670, 18535914480, 105803208906, 604598535360, 3458315246238, 19799128470896, 113441876080306, 650450158678256, 3731985710892454, 21425304596140080
Offset: 0
-
CoefficientList[Series[(1-7x+Sqrt[1-6x+x^2])/((2-12x)Sqrt[1-6x+x^2]),{x,0,100}],x]
-
x='x+O('x^50); Vec((1-7*x+sqrt(1-6*x+x^2))/((2-12*x)*sqrt(1-6*x+x^2))) \\ G. C. Greubel, Mar 26 2017
A190725
Diagonal sums of Riordan matrix A118384.
Original entry on oeis.org
1, 3, 14, 69, 355, 1872, 10037, 54459, 298138, 1643565, 9111191, 50739120, 283635481, 1590648819, 8945090870, 50423423685, 284831065723, 1611918320688, 9137141645645, 51869777201595, 294843392318146, 1677980087882013, 9559901907126959
Offset: 0
-
CoefficientList[Series[(3+3x-Sqrt[1-6x+x^2])/(2(1+3x+x^2)Sqrt[1-6x+x^2]),{x,0,100}],x]
-
x='x+O('x^50); Vec((3+3*x-sqrt(1-6*x+x^2))/(2*(1+3*x+x^2)*sqrt(1-6*x+x^2))) \\ G. C. Greubel, Mar 26 2017
A200536
Triangle, read by rows of 2*n+1 terms, where row n lists the coefficients in (1+3*x+2*x^2)^n.
Original entry on oeis.org
1, 1, 3, 2, 1, 6, 13, 12, 4, 1, 9, 33, 63, 66, 36, 8, 1, 12, 62, 180, 321, 360, 248, 96, 16, 1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32, 1, 18, 147, 720, 2355, 5418, 8989, 10836, 9420, 5760, 2352, 576, 64, 1, 21, 203, 1197, 4809, 13923, 29953, 48639, 59906, 55692, 38472, 19152, 6496, 1344, 128
Offset: 0
The triangle begins:
1;
1, 3, 2;
1, 6, 13, 12, 4;
1, 9, 33, 63, 66, 36, 8;
1, 12, 62, 180, 321, 360, 248, 96, 16;
1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32;
1, 18, 147, 720, 2355, 5418, 8989, 10836, 9420, 5760, 2352, 576, 64;
1, 21, 203, 1197, 4809, 13923, 29953, 48639, 59906, 55692, 38472, 19152, 6496, 1344, 128;
1, 24, 268, 1848, 8806, 30744, 81340, 166344, 265729, 332688, 325360, 245952, 140896, 59136, 17152, 3072, 256; ...
where row n equals the coefficients in (1+x)^n*(1+2*x)^n.
-
{T(n,k)=polcoeff((1+3*x+2*x^2+x*O(x^k))^n,k)}
{for(n=0,10,for(k=0,2*n,print1(T(n,k),","));print(""))}
A110171
Triangle read by rows: T(n,k) (0 <= k <= n) is the number of Delannoy paths of length n that start with exactly k (0,1) steps (or, equivalently, with exactly k (1,0) steps).
Original entry on oeis.org
1, 2, 1, 8, 4, 1, 38, 18, 6, 1, 192, 88, 32, 8, 1, 1002, 450, 170, 50, 10, 1, 5336, 2364, 912, 292, 72, 12, 1, 28814, 12642, 4942, 1666, 462, 98, 14, 1, 157184, 68464, 27008, 9424, 2816, 688, 128, 16, 1, 864146, 374274, 148626, 53154, 16722, 4482, 978, 162, 18, 1
Offset: 0
T(2,1)=4 because we have NED, NENE, NEEN and NDE.
Triangle starts:
1;
2, 1;
8, 4, 1;
38, 18, 6, 1;
192, 88, 32, 8, 1;
From _Paul Barry_, May 07 2009: (Start)
Production matrix is
2, 1,
4, 2, 1,
6, 2, 2, 1,
8, 2, 2, 2, 1,
10, 2, 2, 2, 2, 1,
12, 2, 2, 2, 2, 2, 1,
14, 2, 2, 2, 2, 2, 2, 1,
16, 2, 2, 2, 2, 2, 2, 2, 1,
18, 2, 2, 2, 2, 2, 2, 2, 2, 1 (End)
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
- Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
- W.-j. Woan, The Lagrange Inversion Formula and Divisibility Properties, JIS 10 (2007) 07.7.8, example 5.
-
Q:=sqrt(1-6*z+z^2): G:=(1+z+Q)/Q/(2-t+t*z+t*Q): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
-
T[n_, n_] = 1;
T[n_, k_] := Sum[Binomial[n, i] Binomial[2n-k-i-1, n-k-i], {i, 0, n}];
Table[T[n, k], {n, 0, 9}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 13 2019 *)
-
A110171 = lambda n,k : binomial(n, k)*hypergeometric([k-n, n], [k+1], -1)
for n in (0..9): [round(A110171(n,k).n(100)) for k in (0..n)] # Peter Luschny, Sep 17 2014
Original entry on oeis.org
1, 3, 2, 13, 18, 6, 63, 132, 90, 20, 321, 900, 930, 420, 70, 1683, 5910, 8190, 5600, 1890, 252, 8989, 37926, 65940, 60480, 30870, 8316, 924, 48639, 239624, 501228, 577080, 395010, 160776, 36036, 3432, 265729, 1497096, 3660300, 5072760, 4358970, 2378376, 804804, 154440, 12870, 1462563, 9274410, 25951860, 42060480, 43513470, 29801772, 13513500, 3912480, 656370, 48620
Offset: 0
Triangle begins
n\k| 0 1 2 3 4 5 6 7
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0 | 1
1 | 3 2
2 | 13 18 6
3 | 63 132 90 20
4 | 321 900 930 420 70
5 | 1683 5910 8190 5600 1890 252
6 | 8989 37926 65940 60480 30870 8316 924
7 | 48639 239624 501228 577080 395010 160776 36036 3432
...
-
A376467 := proc(n, k); add(binomial(n, j)*binomial(n+j, j)*binomial(j, k), j = k..n) end:
seq(print(seq(A376467(n, k) , k = 0..n)), n = 0..10);
Showing 1-6 of 6 results.
Comments