cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A264772 Triangle T(n,k) = binomial(3*n - 2*k, 2*n - k), 0 <= k <= n.

Original entry on oeis.org

1, 3, 1, 15, 4, 1, 84, 21, 5, 1, 495, 120, 28, 6, 1, 3003, 715, 165, 36, 7, 1, 18564, 4368, 1001, 220, 45, 8, 1, 116280, 27132, 6188, 1365, 286, 55, 9, 1, 735471, 170544, 38760, 8568, 1820, 364, 66, 10, 1, 4686825, 1081575, 245157, 54264, 11628, 2380, 455, 78, 11, 1
Offset: 0

Views

Author

Peter Bala, Nov 24 2015

Keywords

Comments

Riordan array (f(x), x*g(x)), where g(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + ... is the o.g.f. for A001764 and f(x) = g(x)/(3 - 2*g(x)) = 1 + 3*x + 15*x^2 + 84*x^3 + 495*x^4 + ... is the o.g.f. for A005809.
The even numbered columns give the Riordan array A119301, the odd numbered columns give the Riordan array A144484. A159841 is the array formed from columns 1,4,7,10,....
More generally, if R = (R(n,k))n,k>=0 is a proper Riordan array, m is a nonnegative integer and a > b are integers then the array with (n,k)-th element R((m + 1)*n - a*k, m*n - b*k) is also a Riordan array (not necessarily proper). Here we take R as Pascal's triangle and m = a = 2, b = 1. See A092392, A264773, A264774 and A113139 for further examples.

Examples

			Triangle begins
.n\k.|......0.....1....2....3...4..5...6..7...
----------------------------------------------
..0..|      1
..1..|      3     1
..2..|     15     4    1
..3..|     84    21    5    1
..4..|    495   120   28    6   1
..5..|   3003   715  165   36   7  1
..6..|  18564  4368 1001  220  45  8  1
..7..| 116280 27132 6188 1365 286 55  9  1
...
		

Crossrefs

Cf. A005809 (column 0), A045721 (column 1), A025174 (column 2), A004319 (column 3), A236194 (column 4), A013698 (column 5). Cf. A001764, A007318, A092392, A119301 (C(3n-k,2n)), A144484 (C(3n+1-k,2n+1)), A159841 (C(3n+1,2n+k+1)), A264773, A264774.

Programs

  • Magma
    /* As triangle */ [[Binomial(3*n-2*k, n-k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
  • Maple
    A264772:= proc(n,k) binomial(3*n - 2*k, 2*n - k); end proc:
    seq(seq(A264772(n,k), k = 0..n), n = 0..10);
  • Mathematica
    Table[Binomial[3 n - 2 k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)

Formula

T(n,k) = binomial(3*n - 2*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(3*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(2*n + 1)*binomial(3*n,n)*x^n.

A190666 Number of walks from (0,0) to (n+3,n) which take steps from {E, N, NE}.

Original entry on oeis.org

1, 9, 61, 377, 2241, 13073, 75517, 433905, 2485825, 14218905, 81270333, 464387817, 2653649025, 15167050785, 86716873725, 495998874593, 2838240338817, 16248650965289, 93065296937533, 533285164334169, 3057236753252161, 17534423944871729, 100609937775369981
Offset: 0

Views

Author

Shanzhen Gao, May 25 2011

Keywords

Comments

+-3-diagonal of A008288 as a square array. - Shel Kaphan, Jan 07 2023

References

  • S. Gao, H. Niederhausen, Counting New Lattice Paths and Walks with Several Step Vectors (submitted to Congr. Numer.). - Shanzhen Gao, May 25 2011

Crossrefs

Programs

  • Maple
    b:= proc(i, j) option remember;
          if i<0 or j<0 then 0
        elif i=0 and j=0 then 1
        else b(i-1, j) +b(i, j-1) +b(i-1, j-1)
          fi
        end:
    a:= n-> b(n+3, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 28 2011
  • Mathematica
    b[i_, j_] /; i<0 || j<0 = 0; b[0, 0] = 1; b[i_, j_]:= b[i, j]= b[i-1, j] + b[i, j-1] + b[i-1, j-1]; a[n_] := b[n+3, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 01 2011, after Maple prog. *)
    CoefficientList[Series[(-1+3*x-x^2+(1-6*x+6*x^2-x^3)/Sqrt[x^2-6*x+1])/(2*x^3), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
    Table[(-1)^n Hypergeometric2F1[-n, n+4, 1, 2], {n,0,22}] (* Peter Luschny, Mar 02 2017 *)

Formula

a(n) = Sum_{k=0..n} C(n,k) * C(n+k+3,k+3) = A113139 (n+3,3). - Alois P. Heinz, Jun 01 2011
G.f.: (-1 + 3*x - x^2 + (1 - 6*x + 6*x^2 - x^3)/sqrt(x^2 - 6*x + 1))/(2*x^3). - Alois P. Heinz, Jun 03 2011
Recurrence: n*(n+3)*a(n) = (5*n^2 + 15*n + 16)*a(n-1) + (5*n^2 - 5*n + 6)*a(n-2) - (n-2)*(n+1)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ sqrt(1632 + 1154*sqrt(2))*(3 + 2*sqrt(2))^n/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012
From Peter Bala, Mar 02 2017: (Start)
a(n) = (1/2^(n+1))*Sum_{k >= 3} (1/2^k)*binomial(n+k, k)*binomial(n+k, n+3).
a(n) = (-1)^n*Sum_{k = 0..n} (-2)^k*binomial(n,k) * binomial(n+k+3,k).
n*(n+3)*(2*n + 1)*a(n) = 6*(n+1)*(2*n^2 + 4*n + 3)*a(n-1) - (n-1)*(n+2)*(2*n + 3)*a(n-2) with a(0) = 1 and a(1) = 9. (End)
a(n) = (-1)^n*hypergeom([-n, n+4], [1], 2). - Peter Luschny, Mar 02 2017

A110171 Triangle read by rows: T(n,k) (0 <= k <= n) is the number of Delannoy paths of length n that start with exactly k (0,1) steps (or, equivalently, with exactly k (1,0) steps).

Original entry on oeis.org

1, 2, 1, 8, 4, 1, 38, 18, 6, 1, 192, 88, 32, 8, 1, 1002, 450, 170, 50, 10, 1, 5336, 2364, 912, 292, 72, 12, 1, 28814, 12642, 4942, 1666, 462, 98, 14, 1, 157184, 68464, 27008, 9424, 2816, 688, 128, 16, 1, 864146, 374274, 148626, 53154, 16722, 4482, 978, 162, 18, 1
Offset: 0

Views

Author

Emeric Deutsch, Jul 14 2005

Keywords

Comments

A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1).
Column k for k >= 1 has g.f. z^k*R^(k-1)*g*(1+z*R), where R = 1 + zR + zR^2 = (1 - z - sqrt(1-6z+z^2))/(2z) is the g.f. of the large Schroeder numbers (A006318) and g = 1/sqrt(1-6z+z^2) is the g.f. of the central Delannoy numbers (A001850).
Sum_{k=0..n} k*T(n,k) = A050151(n) (the partial sums of the central Delannoy numbers) = (1/2)*n*R(n), where R(n) = A006318(n) is the n-th large Schroeder number.
From Paul Barry, May 07 2009: (Start)
Riordan array ((1+x+sqrt(1-6x+x^2))/(2*sqrt(1-6x+x^2)), (1-x-sqrt(1-6x+x^2))/2).
Inverse of Riordan array ((1-2x-x^2)/(1-x^2), x(1-x)/(1+x)). (End)

Examples

			T(2,1)=4 because we have NED, NENE, NEEN and NDE.
Triangle starts:
    1;
    2,  1;
    8,  4,  1;
   38, 18,  6,  1;
  192, 88, 32,  8,  1;
From _Paul Barry_, May 07 2009: (Start)
Production matrix is
   2, 1,
   4, 2, 1,
   6, 2, 2, 1,
   8, 2, 2, 2, 1,
  10, 2, 2, 2, 2, 1,
  12, 2, 2, 2, 2, 2, 1,
  14, 2, 2, 2, 2, 2, 2, 1,
  16, 2, 2, 2, 2, 2, 2, 2, 1,
  18, 2, 2, 2, 2, 2, 2, 2, 2, 1 (End)
		

Crossrefs

Programs

  • Maple
    Q:=sqrt(1-6*z+z^2): G:=(1+z+Q)/Q/(2-t+t*z+t*Q): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
  • Mathematica
    T[n_, n_] = 1;
    T[n_, k_] := Sum[Binomial[n, i] Binomial[2n-k-i-1, n-k-i], {i, 0, n}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 13 2019 *)
  • Sage
    A110171 = lambda n,k : binomial(n, k)*hypergeometric([k-n, n], [k+1], -1)
    for n in (0..9): [round(A110171(n,k).n(100)) for k in (0..n)] # Peter Luschny, Sep 17 2014

Formula

T(n,0) = A002003(n) for n >= 1.
T(n,1) = A050146(n) for n >= 1.
Row sums are the central Delannoy numbers (A001850).
G.f.: (1+z+Q)/(Q(2-t+tz+tQ)), where Q=sqrt(1-6z+z^2).
T(n,k) = x^(n-k)*((1+x)/(1-x))^n. - Paul Barry, May 07 2009
T(n,k) = C(n, k)*hypergeometric([k-n, n], [k+1], -1). - Peter Luschny, Sep 17 2014
From Peter Bala, Jun 29 2015: (Start)
T(n,k) = Sum_{i = 0..n} binomial(n,i)*binomial(2*n-k-i-1,n-k-i).
Matrix product A118384 * A007318^(-1)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = ( 1 - x - sqrt(1 - 6*x + x^2) )/2 and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan). (End)
T(n,k) = P(n-k, k, -1, 3), where P(n, alpha, beta, x) is the n-th Jacobi polynomial with parameters alpha and beta. Cf. A113139. - Peter Bala, Feb 16 2020

A264773 Triangle T(n,k) = binomial(4*n - 3*k, 3*n - 2*k), 0 <= k <= n.

Original entry on oeis.org

1, 4, 1, 28, 5, 1, 220, 36, 6, 1, 1820, 286, 45, 7, 1, 15504, 2380, 364, 55, 8, 1, 134596, 20349, 3060, 455, 66, 9, 1, 1184040, 177100, 26334, 3876, 560, 78, 10, 1, 10518300, 1560780, 230230, 33649, 4845, 680, 91, 11, 1, 94143280, 13884156, 2035800, 296010, 42504, 5985, 816, 105, 12, 1
Offset: 0

Views

Author

Peter Bala, Nov 30 2015

Keywords

Comments

Riordan array (f(x),x*g(x)), where g(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + ... is the o.g.f. for A002293 and f(x) = g(x)/(4 - 3*g(x)) = 1 + 4*x + 28*x^2 + 220*x^3 + 1820*x^4 + ... is the o.g.f. for A005810.
More generally, if (R(n,k))n,k>=0 is a proper Riordan array and m is a nonnegative integer and a > b are integers then the array with (n,k)-th element R((m + 1)*n - a*k, m*n - b*k) is also a Riordan array (not necessarily proper). Here we take R as Pascal's triangle and m = a = 3 and b = 2. See A092392, A264772, A264774 and A113139 for further examples.

Examples

			Triangle begins
  n\k |       0      1     2    3   4   5   6   7
------+-----------------------------------------------
   0  |       1
   1  |       4      1
   2  |      28      5     1
   3  |     220     36     6    1
   4  |    1820    286    45    7   1
   5  |   15504   2380   364   55   8   1
   6  |  134596  20349  3060  455  66   9   1
   7  | 1184040 177100 26334 3876 560  78  10   1
...
		

Crossrefs

A005810 (column 0), A052203 (column 1), A257633 (column 2), A224274 (column 3), A004331 (column 4). Cf. A002293, A007318, A092392 (C(2n-k,n)), A119301 (C(3n-k,n-k)), A264772, A264774.

Programs

  • Magma
    /* As triangle: */ [[Binomial(4*n-3*k, 3*n-2*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
  • Maple
    A264773:= proc(n,k) binomial(4*n - 3*k, 3*n - 2*k); end proc:
    seq(seq(A264773(n,k), k = 0..n), n = 0..10);
  • Mathematica
    A264773[n_,k_] := Binomial[4*n - 3*k, n - k];
    Table[A264773[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Feb 06 2024 *)

Formula

T(n,k) = binomial(4*n - 3*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(4*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(3*n + 1)*binomial(4*n,n)*x^n.

A264774 Triangle T(n,k) = binomial(5*n - 4*k, 4*n - 3*k), 0 <= k <= n.

Original entry on oeis.org

1, 5, 1, 45, 6, 1, 455, 55, 7, 1, 4845, 560, 66, 8, 1, 53130, 5985, 680, 78, 9, 1, 593775, 65780, 7315, 816, 91, 10, 1, 6724520, 736281, 80730, 8855, 969, 105, 11, 1, 76904685, 8347680, 906192, 98280, 10626, 1140, 120, 12, 1, 886163135, 95548245, 10295472, 1107568, 118755, 12650, 1330, 136, 13, 1
Offset: 0

Views

Author

Peter Bala, Nov 30 2015

Keywords

Comments

Riordan array (f(x),x*g(x)), where g(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + ... is the o.g.f. for A002294 and f(x) = g(x)/(5 - 4*g(x)) = 1 + 5*x + 45*x^2 + 455*x^3 + 4845*x^4 + ... is the o.g.f. for A001449.
More generally, if (R(n,k))n,k>=0 is a proper Riordan array and m is a nonnegative integer and a > b are integers then the array with (n,k)-th element R((m + 1)*n - a*k, m*n - b*k) is also a Riordan array (not necessarily proper). Here we take R as Pascal's triangle and m = a = 4 and b = 3. See A092392, A264772, A264773 and A113139 for further examples.

Examples

			Triangle begins
  n\k |       0      1     2    3   4   5   6   7
------+---------------------------------------------
   0  |       1
   1  |       5      1
   2  |      45      6     1
   3  |     455     55     7    1
   4  |    4845    560    66    8   1
   5  |   53130   5985   680   78   9   1
   6  |  593775  65780  7315  816  91  10   1
   7  | 6724520 736281 80730 8855 969 105  11  1
...
		

Crossrefs

Cf. A001449 (column 0), A079589(column 1). Cf. A002294, A007318, A092392 (C(2n-k,n)), A113139, A119301 (C(3n-k,n-k)), A264772, A264773.

Programs

  • Magma
    /* As triangle */ [[Binomial(5*n-4*k, 4*n-3*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
  • Maple
    A264774:= proc(n,k) binomial(5*n - 4*k, 4*n - 3*k); end proc:
    seq(seq(A264774(n,k), k = 0..n), n = 0..10);
  • Mathematica
    Table[Binomial[5 n - 4 k, 4 n - 3 k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)

Formula

T(n,k) = binomial(5*n - 4*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(5*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(4*n + 1)*binomial(5*n,n)*x^n.

A113141 Inverse of a Delannoy related triangle.

Original entry on oeis.org

1, -3, 1, 2, -5, 1, -2, 10, -7, 1, 2, -14, 22, -9, 1, -2, 18, -46, 38, -11, 1, 2, -22, 78, -106, 58, -13, 1, -2, 26, -118, 230, -202, 82, -15, 1, 2, -30, 166, -426, 538, -342, 110, -17, 1, -2, 34, -222, 710, -1194, 1082, -534, 142, -19, 1, 2, -38, 286, -1098, 2330, -2814, 1958, -786, 178, -21, 1
Offset: 0

Views

Author

Paul Barry, Oct 15 2005

Keywords

Comments

First column is (-1)^n*A104435(n). Row sums are 1,-2,-2,2,2,-2,-2,... Second column is A113142. Inverse of A113139.

Examples

			Triangle begins
1;
-3, 1;
2, -5, 1;
-2, 10, -7, 1;
2, -14, 22, -9, 1;
-2, 18, -46, 38, -11, 1;
		

A113140 Diagonal sums of a Delannoy related triangle.

Original entry on oeis.org

1, 3, 14, 68, 347, 1819, 9712, 52532, 286905, 1578679, 8738278, 48601968, 271406347, 1520725095, 8545396208, 48138689272, 271768537793, 1537212749339, 8709732836238, 49423440297324, 280835252080651, 1597731101233763
Offset: 0

Views

Author

Paul Barry, Oct 15 2005

Keywords

Comments

Diagonal sums of A113139.

Formula

a(n)=sum{k=0..floor(n/2), sum{j=0..n-k, C(n-2k, j)C(n-k+j, k+j)}}.
Showing 1-7 of 7 results.