A264772
Triangle T(n,k) = binomial(3*n - 2*k, 2*n - k), 0 <= k <= n.
Original entry on oeis.org
1, 3, 1, 15, 4, 1, 84, 21, 5, 1, 495, 120, 28, 6, 1, 3003, 715, 165, 36, 7, 1, 18564, 4368, 1001, 220, 45, 8, 1, 116280, 27132, 6188, 1365, 286, 55, 9, 1, 735471, 170544, 38760, 8568, 1820, 364, 66, 10, 1, 4686825, 1081575, 245157, 54264, 11628, 2380, 455, 78, 11, 1
Offset: 0
Triangle begins
.n\k.|......0.....1....2....3...4..5...6..7...
----------------------------------------------
..0..| 1
..1..| 3 1
..2..| 15 4 1
..3..| 84 21 5 1
..4..| 495 120 28 6 1
..5..| 3003 715 165 36 7 1
..6..| 18564 4368 1001 220 45 8 1
..7..| 116280 27132 6188 1365 286 55 9 1
...
- Michael De Vlieger, Table of n, a(n) for n = 0..11475
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- Paul Barry, On the halves of a Riordan array and their antecedents, arXiv:1906.06373 [math.CO], 2019.
- E. Lebensztayn, On the asymptotic enumeration of accessible automata, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No.3, 2010, 75-80, Section 2.
- R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics, CreateSpace Independent Publishing Platform 2006, Section 5.6, ISBN-13: 978-1502925244.
Cf.
A005809 (column 0),
A045721 (column 1),
A025174 (column 2),
A004319 (column 3),
A236194 (column 4),
A013698 (column 5). Cf.
A001764,
A007318,
A092392,
A119301 (C(3n-k,2n)),
A144484 (C(3n+1-k,2n+1)),
A159841 (C(3n+1,2n+k+1)),
A264773,
A264774.
-
/* As triangle */ [[Binomial(3*n-2*k, n-k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
-
A264772:= proc(n,k) binomial(3*n - 2*k, 2*n - k); end proc:
seq(seq(A264772(n,k), k = 0..n), n = 0..10);
-
Table[Binomial[3 n - 2 k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)
A190666
Number of walks from (0,0) to (n+3,n) which take steps from {E, N, NE}.
Original entry on oeis.org
1, 9, 61, 377, 2241, 13073, 75517, 433905, 2485825, 14218905, 81270333, 464387817, 2653649025, 15167050785, 86716873725, 495998874593, 2838240338817, 16248650965289, 93065296937533, 533285164334169, 3057236753252161, 17534423944871729, 100609937775369981
Offset: 0
- S. Gao, H. Niederhausen, Counting New Lattice Paths and Walks with Several Step Vectors (submitted to Congr. Numer.). - Shanzhen Gao, May 25 2011
-
b:= proc(i, j) option remember;
if i<0 or j<0 then 0
elif i=0 and j=0 then 1
else b(i-1, j) +b(i, j-1) +b(i-1, j-1)
fi
end:
a:= n-> b(n+3, n):
seq(a(n), n=0..30); # Alois P. Heinz, May 28 2011
-
b[i_, j_] /; i<0 || j<0 = 0; b[0, 0] = 1; b[i_, j_]:= b[i, j]= b[i-1, j] + b[i, j-1] + b[i-1, j-1]; a[n_] := b[n+3, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 01 2011, after Maple prog. *)
CoefficientList[Series[(-1+3*x-x^2+(1-6*x+6*x^2-x^3)/Sqrt[x^2-6*x+1])/(2*x^3), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
Table[(-1)^n Hypergeometric2F1[-n, n+4, 1, 2], {n,0,22}] (* Peter Luschny, Mar 02 2017 *)
A110171
Triangle read by rows: T(n,k) (0 <= k <= n) is the number of Delannoy paths of length n that start with exactly k (0,1) steps (or, equivalently, with exactly k (1,0) steps).
Original entry on oeis.org
1, 2, 1, 8, 4, 1, 38, 18, 6, 1, 192, 88, 32, 8, 1, 1002, 450, 170, 50, 10, 1, 5336, 2364, 912, 292, 72, 12, 1, 28814, 12642, 4942, 1666, 462, 98, 14, 1, 157184, 68464, 27008, 9424, 2816, 688, 128, 16, 1, 864146, 374274, 148626, 53154, 16722, 4482, 978, 162, 18, 1
Offset: 0
T(2,1)=4 because we have NED, NENE, NEEN and NDE.
Triangle starts:
1;
2, 1;
8, 4, 1;
38, 18, 6, 1;
192, 88, 32, 8, 1;
From _Paul Barry_, May 07 2009: (Start)
Production matrix is
2, 1,
4, 2, 1,
6, 2, 2, 1,
8, 2, 2, 2, 1,
10, 2, 2, 2, 2, 1,
12, 2, 2, 2, 2, 2, 1,
14, 2, 2, 2, 2, 2, 2, 1,
16, 2, 2, 2, 2, 2, 2, 2, 1,
18, 2, 2, 2, 2, 2, 2, 2, 2, 1 (End)
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
- Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
- W.-j. Woan, The Lagrange Inversion Formula and Divisibility Properties, JIS 10 (2007) 07.7.8, example 5.
-
Q:=sqrt(1-6*z+z^2): G:=(1+z+Q)/Q/(2-t+t*z+t*Q): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
-
T[n_, n_] = 1;
T[n_, k_] := Sum[Binomial[n, i] Binomial[2n-k-i-1, n-k-i], {i, 0, n}];
Table[T[n, k], {n, 0, 9}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 13 2019 *)
-
A110171 = lambda n,k : binomial(n, k)*hypergeometric([k-n, n], [k+1], -1)
for n in (0..9): [round(A110171(n,k).n(100)) for k in (0..n)] # Peter Luschny, Sep 17 2014
A264773
Triangle T(n,k) = binomial(4*n - 3*k, 3*n - 2*k), 0 <= k <= n.
Original entry on oeis.org
1, 4, 1, 28, 5, 1, 220, 36, 6, 1, 1820, 286, 45, 7, 1, 15504, 2380, 364, 55, 8, 1, 134596, 20349, 3060, 455, 66, 9, 1, 1184040, 177100, 26334, 3876, 560, 78, 10, 1, 10518300, 1560780, 230230, 33649, 4845, 680, 91, 11, 1, 94143280, 13884156, 2035800, 296010, 42504, 5985, 816, 105, 12, 1
Offset: 0
Triangle begins
n\k | 0 1 2 3 4 5 6 7
------+-----------------------------------------------
0 | 1
1 | 4 1
2 | 28 5 1
3 | 220 36 6 1
4 | 1820 286 45 7 1
5 | 15504 2380 364 55 8 1
6 | 134596 20349 3060 455 66 9 1
7 | 1184040 177100 26334 3876 560 78 10 1
...
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- E. Lebensztayn, On the asymptotic enumeration of accessible automata, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No. 3, 2010, 75-80, Section 2.
- R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics CreateSpace Independent Publishing Platform 2006, Section 5.6, ISBN-13: 978-1502925244.
A005810 (column 0),
A052203 (column 1),
A257633 (column 2),
A224274 (column 3),
A004331 (column 4). Cf.
A002293,
A007318,
A092392 (C(2n-k,n)),
A119301 (C(3n-k,n-k)),
A264772,
A264774.
-
/* As triangle: */ [[Binomial(4*n-3*k, 3*n-2*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
-
A264773:= proc(n,k) binomial(4*n - 3*k, 3*n - 2*k); end proc:
seq(seq(A264773(n,k), k = 0..n), n = 0..10);
-
A264773[n_,k_] := Binomial[4*n - 3*k, n - k];
Table[A264773[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Feb 06 2024 *)
A264774
Triangle T(n,k) = binomial(5*n - 4*k, 4*n - 3*k), 0 <= k <= n.
Original entry on oeis.org
1, 5, 1, 45, 6, 1, 455, 55, 7, 1, 4845, 560, 66, 8, 1, 53130, 5985, 680, 78, 9, 1, 593775, 65780, 7315, 816, 91, 10, 1, 6724520, 736281, 80730, 8855, 969, 105, 11, 1, 76904685, 8347680, 906192, 98280, 10626, 1140, 120, 12, 1, 886163135, 95548245, 10295472, 1107568, 118755, 12650, 1330, 136, 13, 1
Offset: 0
Triangle begins
n\k | 0 1 2 3 4 5 6 7
------+---------------------------------------------
0 | 1
1 | 5 1
2 | 45 6 1
3 | 455 55 7 1
4 | 4845 560 66 8 1
5 | 53130 5985 680 78 9 1
6 | 593775 65780 7315 816 91 10 1
7 | 6724520 736281 80730 8855 969 105 11 1
...
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- E. Lebensztayn, On the asymptotic enumeration of accessible automata, Section 2, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No. 3, 2010, 75-80, Section 2.
- R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics, CreateSpace Independent Publishing Platform 2006, Section 5.6, ISBN-13: 978-1502925244.
-
/* As triangle */ [[Binomial(5*n-4*k, 4*n-3*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
-
A264774:= proc(n,k) binomial(5*n - 4*k, 4*n - 3*k); end proc:
seq(seq(A264774(n,k), k = 0..n), n = 0..10);
-
Table[Binomial[5 n - 4 k, 4 n - 3 k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)
A113141
Inverse of a Delannoy related triangle.
Original entry on oeis.org
1, -3, 1, 2, -5, 1, -2, 10, -7, 1, 2, -14, 22, -9, 1, -2, 18, -46, 38, -11, 1, 2, -22, 78, -106, 58, -13, 1, -2, 26, -118, 230, -202, 82, -15, 1, 2, -30, 166, -426, 538, -342, 110, -17, 1, -2, 34, -222, 710, -1194, 1082, -534, 142, -19, 1, 2, -38, 286, -1098, 2330, -2814, 1958, -786, 178, -21, 1
Offset: 0
Triangle begins
1;
-3, 1;
2, -5, 1;
-2, 10, -7, 1;
2, -14, 22, -9, 1;
-2, 18, -46, 38, -11, 1;
A113140
Diagonal sums of a Delannoy related triangle.
Original entry on oeis.org
1, 3, 14, 68, 347, 1819, 9712, 52532, 286905, 1578679, 8738278, 48601968, 271406347, 1520725095, 8545396208, 48138689272, 271768537793, 1537212749339, 8709732836238, 49423440297324, 280835252080651, 1597731101233763
Offset: 0
Showing 1-7 of 7 results.
Comments