A264772 Triangle T(n,k) = binomial(3*n - 2*k, 2*n - k), 0 <= k <= n.
1, 3, 1, 15, 4, 1, 84, 21, 5, 1, 495, 120, 28, 6, 1, 3003, 715, 165, 36, 7, 1, 18564, 4368, 1001, 220, 45, 8, 1, 116280, 27132, 6188, 1365, 286, 55, 9, 1, 735471, 170544, 38760, 8568, 1820, 364, 66, 10, 1, 4686825, 1081575, 245157, 54264, 11628, 2380, 455, 78, 11, 1
Offset: 0
Examples
Triangle begins .n\k.|......0.....1....2....3...4..5...6..7... ---------------------------------------------- ..0..| 1 ..1..| 3 1 ..2..| 15 4 1 ..3..| 84 21 5 1 ..4..| 495 120 28 6 1 ..5..| 3003 715 165 36 7 1 ..6..| 18564 4368 1001 220 45 8 1 ..7..| 116280 27132 6188 1365 286 55 9 1 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- Paul Barry, On the halves of a Riordan array and their antecedents, arXiv:1906.06373 [math.CO], 2019.
- E. Lebensztayn, On the asymptotic enumeration of accessible automata, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No.3, 2010, 75-80, Section 2.
- R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics, CreateSpace Independent Publishing Platform 2006, Section 5.6, ISBN-13: 978-1502925244.
Crossrefs
Programs
-
Magma
/* As triangle */ [[Binomial(3*n-2*k, n-k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
-
Maple
A264772:= proc(n,k) binomial(3*n - 2*k, 2*n - k); end proc: seq(seq(A264772(n,k), k = 0..n), n = 0..10);
-
Mathematica
Table[Binomial[3 n - 2 k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)
Formula
T(n,k) = binomial(3*n - 2*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(3*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(2*n + 1)*binomial(3*n,n)*x^n.
Comments