cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A110181 Row sums of number triangle A110180.

Original entry on oeis.org

1, 2, 3, 6, 15, 42, 131, 432, 1497, 5420, 20373, 79422, 319927, 1328764, 5677653, 24904584, 111961129, 515029020, 2421047613, 11616330342, 56829235095, 283211069352, 1436529522233, 7410596379456, 38852645340297
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Formula

a(n)=sum{k=0..n, sum{j=0..floor((n-k)/2), C(n-k, j)C(n-k-j, j)k^j}}.

A110182 Diagonal sums of number triangle A110180.

Original entry on oeis.org

1, 1, 2, 2, 5, 9, 26, 66, 199, 575, 1790, 5542, 17945, 58733, 198880, 685296, 2429281, 8778321, 32491940, 122503412, 471379771, 1844669495, 7346727298, 29712688698, 122054603983, 508548201863, 2149211636944, 9204566602696, 39944636660655
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Formula

a(n)=sum{k=0..floor(n/2), sum{j=0..floor((n-2k)/2), C(n-2k, j)C(n-2k-j, j)k^j}}

A307855 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*x + (1-4*k)*x^2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 7, 1, 1, 1, 7, 13, 19, 1, 1, 1, 9, 19, 49, 51, 1, 1, 1, 11, 25, 91, 161, 141, 1, 1, 1, 13, 31, 145, 331, 581, 393, 1, 1, 1, 15, 37, 211, 561, 1441, 2045, 1107, 1, 1, 1, 17, 43, 289, 851, 2841, 5797, 7393, 3139, 1
Offset: 0

Views

Author

Seiichi Manyama, May 01 2019

Keywords

Examples

			Square array begins:
   1,   1,    1,    1,     1,     1,     1, ...
   1,   1,    1,    1,     1,     1,     1, ...
   1,   3,    5,    7,     9,    11,    13, ...
   1,   7,   13,   19,    25,    31,    37, ...
   1,  19,   49,   91,   145,   211,   289, ...
   1,  51,  161,  331,   561,   851,  1201, ...
   1, 141,  581, 1441,  2841,  4901,  7741, ...
   1, 393, 2045, 5797, 12489, 22961, 38053, ...
		

Crossrefs

Columns k=0..6 give A000012, A002426, A084601, A084603, A084605, A098264, A098265.
Main diagonal gives A187018.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, j] * Binomial[n-j, j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of (1 + x + k*x^2)^n.
A(n,k) = Sum_{j=0..floor(n/2)} k^j * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} k^j * binomial(n,2*j) * binomial(2*j,j).
D-finite with recurrence: n * A(n,k) = (2*n-1) * A(n-1,k) - (1-4*k) * (n-1) * A(n-2,k).
Showing 1-3 of 3 results.