cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A110180 Triangle of generalized central trinomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 19, 13, 7, 1, 1, 1, 51, 49, 19, 9, 1, 1, 1, 141, 161, 91, 25, 11, 1, 1, 1, 393, 581, 331, 145, 31, 13, 1, 1, 1, 1107, 2045, 1441, 561, 211, 37, 15, 1, 1, 1, 3139, 7393, 5797, 2841, 851, 289, 43, 17, 1, 1
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Comments

Rows sums are A110181. Diagonal sums are A110182. Columns include central trinomial coefficients A002426, A084601, A084603, A084605, A098264. T(n,k) = central coefficient (1 + x + kx^2)^n.

Examples

			Rows begin
  1;
  1,  1;
  1,  1,  1;
  1,  3,  1,  1;
  1,  7,  5,  1,  1;
  1, 19, 13,  7,  1,  1;
		

Programs

  • Mathematica
    T[n_, 0] := 1; T[n_, k_] := Sum[Binomial[n - k, j]*Binomial[n - k - j, j]*k^j, {j, 0, Floor[(n - k)/2]}]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Mar 05 2017 *)

Formula

Number triangle T(n, k) = Sum_{j=0..floor((n-k)/2)} C(n-k, j)*C(n-k-j, j)*k^j.
Showing 1-1 of 1 results.